The field of obesity drugs has been a very difficult one for the pharmaceutical industry. Attempts to develop these drugs have been plagued by major safety failures, notably the notorious “Fen-Phen” case that led to market withdrawal and numerous lawsuits. More recently, rimonabant (Sanofi-Aventis’ Acomplia) failed to gain FDA approval due to psychiatric adverse effects, and the company also later withdrew the drug from the market in Europe. Currently marketed drugs have marginal efficacy and troublesome side effects. The complex physiology of weight control, and our inadequate knowledge of pathways that control energy balance, make development of effective agents difficult.

Moreover, there is a lingering perception that obesity is merely a “lifestyle issue” and a failure of “personal responsibility”. This is despite the consistent finding that weight is as heritable as height, and that there are physiological factors that militate against long-term, medically significant weight loss by overweight or obese individuals. These research results indicate that safe and efficacious obesity drugs will be necessary, in addition to diet and exercise, to ward off obesity and its comorbidities in the rapidly growing, worldwide overweight population.

Currently, late-stage drugs developed by three small California companies, Vivus Pharmaceuticals, Orexigen Therapeutics, and Arena Pharmacuticals, are approaching NDA submission. This follows a long hiatus, since the FDA has approved no anti-obesity drug since 1999. The companies hope that the drugs will reach the market in late 2010 or early 2011. All three drugs work in the brain to suppress appetite, as does the currently marketed prescription drug sibutramine (Abbott’s Meridia/ Reductil). The other current agent, orlistat, is available in prescription form as Roche’s Xenical, and in a low-dose over-the-counter form, GlaxoSmithKline’s alli. Orlistat works in the gut to reduce absorption of fats.

Now comes a report in the 23 October 2009 issue of the Lancet, comparing the effects of liraglutide (Novo Nordisk’s Victoza) and orlistat on weight loss in a 20-week double-blind, placebo-controlled Phase II trial in 564 obese healthy volunteers on a hypocaloric diet and increased physical activity. (A subscription is required to see the complete article). The researchers found that in the 20-week period, subjects on liraglutide lost a significant 4.8-7.2 kilograms (10.6-15.8 pounds), depending on the dose, as compared to 4.1 kilograms (9.0 pounds) on orlistat and 2.8 kilograms (6.2 pounds) on placebo. 76% of subjects on the 3.0-milligram/day dose of liraglutide lost over 5% of their body weight, as compared to 30% of subject on placebo. All doses of liraglutide reduced blood pressure, and the 1.8 mg through 3.0 mg doses reduced the prevalence of prediabetes (e.g., fasting plasma glucose above normal, but below that which is classified as diabetes) by between 84-96%. The most common side effects of liraglutide were nausea and vomiting, which usually occurred during the first month of treatment. However, these effects were mainly transient and rarely led to subjects discontinuing treatment. No serious adverse effects were seen.

In an open-label extension of the trial, subjects on liraglutide maintained their weight loss, according to Novo Nordisk. Additional questions need to be addressed, including whether subjects on liraglutide maintain their weight loss after they stop taking the drug.

Unlike the two currently marketed obesity drugs, liraglutide is administered via subcutaneous self-injection. Liraglutide was approved in Europe earlier this year, and is currently marketed in Europe for treatment of type 2 diabetes. However, it is awaiting FDA approval for that indication. It is not yet approved for treatment of obesity in any jurisdiction.

Liraglutide is a member of a class of drugs called incretin mimetics. An incretin is a gastrointestinal hormone that triggers an increase in insulin secretion by the pancreas, and also reduces gastric emptying. The latter effect slows nutrient release into the bloodstream and appears to increase satiety and thus reduce food intake. The major physiological incretin is glucagon-like peptide 1 (GLP-1), and incretin mimetic drugs are peptides with homology to GLP-1 that have a longer half-life in the bloodstream than does GLP-1.

The first incretin mimetic to reach the market is exenatide (Amylin/Lilly’s Byetta), which is based on a Gila monster lizard salivary peptide and was approved for treatment of type 2 diabetes in 2005. Physicians sometimes prescribe exenatide off-label for treatment of obesity. Exenatide has a relatively short half-life, and must be self-injected twice a day. Amylin and Lilly are therefore developing a longer-acting, once-weekly formulation for treatment of type 2 diabetes. Researchers working with Amylin and Lilly also reported positive results of a clinical trial of exenatide in treatment of nondiabetics for obesity at a scientific meeting earlier this year. Amylin is also developing two earlier-stage biologics, pramlintide/metreleptin and davalintide, for treatment of obesity. Neither is an incretin mimetic.

Liraglutide is a GLP-1 analogue designed to bind to human serum albumin in the bloodstream, and thus has a longer half-life than exenatide, and is self-injected only once a day. Liraglutide is thus more convenient for patients to use than exenatide. The results of a study published in the Lancet earlier this year indicate that liraglutide is more effective than exenatide in long-term reduction in blood glucose (measured as hemoglobin A1c) in patients with type 2 diabetes.

The development of liraglutide for obesity represents part of a larger trend—the development of drugs that treat both type 2 diabetes and obesity. In the case of development of obesity drugs, the regulatory pathway for diabetes is easier than for obesity. Companies therefore tend to develop dual diabetes/obesity drugs first for diabetes. As the drugs prove themselves in the clinic, with respect to safety, antidiabetic efficacy, and effects on weight loss, companies may also develop them for obesity. This is the case with liraglutide.

In the case of treatment of type 2 diabetes, reducing weight in obese diabetics undergoing drug treatment is a major unmet need. Antidiabetics that also induce weight loss are therefore of special value. We discussed this issue in our 2008 article, “Addressing unmet type 2 diabetes needs”.

There are at least several companies with early stage dual diabetes/obesity drugs. These companies generally prefer to develop these drugs for diabetes. Early stage obesity drug development is mainly on hold, awaiting the regulatory approval of the three late-stage drugs now nearing NDA submission.

Novo Nordisk is also waiting to hear from the FDA regarding regulatory approval of liraglutide for treatment of type 2 diabetes before proceeding with further development of the drug for obesity.

We have produced two additional resources for understanding drug development in type 2 diabetes and obesity. These are, Diabetes and Its Complications: Strategies to Advance Therapy and Optimize R&D and Obesity Drug Pipeline Report Overview, both published by Cambridge Healthtech Institute.