Biopharmconsortium Blog

Expert commentary from Haberman Associates biotechnology and pharmaceutical consulting.

Monthly Archives: November 2013

Agios Pharmaceuticals becomes a clinical-stage company!

Agios Efstratios, Greece. Source: Christef

Agios Efstratios, Greece. Source: Christef

In a news release on September 23, 2013, Agios Pharmaceuticals (Cambridge, MA) announced that it had initiated its first clinical study. The company further discussed its early clinical and preclinical programs in its press release on its Third Quarter financial report, dated November 7, 2013.

Specifically, the company initiated a Phase 1 muticenter clinical trial of AG-221 in patients with advanced hematologic malignancies bearing an isocitrate dehydrogenase 2 (IDH2) mutation. The study is designed to evaluate the safety, pharmacokinetics, pharmacodynamics and efficacy of orally-administered AG-221 in this patient population. The first stage of the Phase 1 study is a dose-escalation phase, which is designed  to determine the maximum tolerated dose and/or the recommended dose to be used in Phase 2 studies. After the completion of this phase, several cohorts of patients will receive AG-221 to further evaluate the safety, tolerability and clinical activity of the maximum tolerated dose.

We discussed AG-221 in our June 17, 2013 article on this blog. AG-221 is an orally available, selective, potent inhibitor of the mutated IDH2 protein. It is thus a targeted (and personalized) therapy for patients with cancers with an IDH2 mutation.

As we summarized in our June 17, 2013 article, wild-type IDH1 and IDH2 catalyze the NADP+-dependent oxidative decarboxylation of isocitrate to α-ketoglutarate. Mutant forms of IDH1 and IDH2, which are found in certain human cancers, no longer catalyze this reaction, but instead catalyzes the NADPH-dependent reduction of α-ketoglutarate to R(-)-2-hydroxyglutarate (2-HG). Agios researchers hypothesized that 2HG is an oncometabolite. They further hypothesized that developing mutant-specific small molecule inhibitors of IDH1 and IDH2 might inhibit the growth or reverse the oncogenic phenotype of cancer cells that carry the mutant enzymes.

As we further discussed in our article, Agios researchers published two articles in the journal Science in May 2013 that support these hypotheses. The researchers showed that drugs that inhibit the mutant forms of IDH1 and IDH2 can reverse the oncogenic effects of the mutant enzymes in patient-derived tumor samples. These results constitute preclinical support for the hypothesis that the two mutant enzymes are driving disease, and that drugs that target the mutant forms of the enzymes can reverse their oncogenic effects.

In the results reported in one of these research articles, Agios researchers tested a mutant-IDH2 inhibitor in hematologic malignancies (including one model leukemia and one patient-derived leukemia), and showed that treatment with the inhibitor caused differentiation of the leukemic cells to normal blood cells. This preclinical study thus supports the initiation of Agios’ new Phase 1 study of AG-221 in patients with mutant-IDH2 bearing hematologic malignancies.

Additional pipeline news in Agios’ Third Quarter 2013 Report

In addition to the report of the initiation of Phase 1 studies of AG-221, Agios reported  that it had advanced AG-120, a mutant-IDH1 inhibitor, toward Investigational New Drug (IND) filing. The company plans to initiate Phase 1 clinical trials of AG-120 in early 2014, in  patients with advanced solid and hematological malignancies that carry an IDH1 mutation.

Agios also reported in their Third Quarter 2013 Report that the company had advanced AG-348 into IND-enabling studies. AG-348 is an activator of pyruvate kinase R (PKR). Germline mutation of PKR can result in pyruvate kinase deficiency (PK deficiency), a form of familial hemolytic anemia. Agios’ in vitro studies indicate that PKR activators can enhance the activity of most common PKR mutations, and suggest that these compounds may be potential treatments for PK deficiency.

Agios’ AG-348 program is part of its R&D aimed at development of treatments for inborn errors of metabolism (IEM). We discussed this program in our November 30, 2011 article on this blog.

Agios to present preclinical research at the ASH meeting in December 2013

In a second November 7, 2013 press release, Agios announced that it would present the results of the preclinical studies of its lead programs in cancer metabolism and in IEM at the 2013 American Society of Hematology (ASH) Annual Meeting, December 7-10, 2013 in New Orleans, LA.

Agios researchers will give one presentation on a study of AG-221 treatment in a primary human IDH2 mutant bearing acute myeloid leukemia (AML) xenograft model. They will also present two posters–one on a mutant-IDH1 inhibitor in combination with Ara-C (arabinofuranosyl cytidine) in a primary human IDH1 mutant bearing AML xenograft model, and another on the effects of a small molecule activation of pyruvate kinase on metabolic activity in red cells from patients with pyruvate kinase deficiency-associated hemolytic anemia.

Can Agios Pharmaceuticals become a new Genentech?

On October 13, 2013, XConomy published an article on Agios’ CEO, David Schenkein. The article is entitled “David Schenkein, Cancer Doc Turned CEO, Aims to Build New Genentech”.

As many industry experts point out, the business environment is much different from that in which Genentech (and Amgen, Genzyme and Biogen) were founded, and grew to become major companies. As one illustration of the difference between the two eras, neither Genentech nor Genzyme are independent companies today. Biogen exists as a merged company, Biogen Idec, which between 2007 and 2011 had to fend off attacks by shareholder activist Carl Icahn.

Moreover, this has been the era of the “virtual biotech company”. These are lean companies with only a very few employees that outsource most of their functions, and that are designed to be acquired by a Big Pharma or large biotech company. The virtual company strategy has been designed to deal with the inability of most young biotech companies to go public in the current financial environment. (However, there has been a surge in biotech IPOs in the past year, including Agios’ own IPO on June 11, 2013. So it is possible that the environment for young biotech companies going public is changing.)

Nevertheless, the XConomy article states that when Dr. Schenkein was in discussions with venture capitalist Third Rock on becoming the CEO of one of their portfolio companies, he stated that he wanted “a company with a vision, and investor support, to be a long-term, independent company”. As we have discussed in this blog, and also in an interview for Chemical & Engineering News (C&EN), Agios’ strategy is to build a company that can endure as an independent firm over a long period of time, and that can also demonstrate sustained performance. This strategy has been characterized (especially in the 1990s and early 2000s) as “Built to Last”, a term that I used in the interview.

Later, Agios posted a reprint of the C&EN article on its website, which it retitled “Built to Last”. This illustrates Agios’ commitment to “Built to Last”, as is more importantly shown by the company’s financial and R&D strategy.

Even if Agios cannot become the next Genentech, it–as well as a few other young platform companies mentioned in the CE&N article–might become an important biotech or pharmaceutical company like Vertex. However, all depends on the success of Agios’ products in the clinic and at regulatory agencies like the FDA, as well as the future shape of the corporate, financial and health care environment.


As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or an initial one-to-one consultation on an issue that is key to your company’s success, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Chemokine receptor inhibitors for prevention of cancer metastasis

CXCR-1 N-terminal peptide bound to IL-8

CXCR-1 N-terminal peptide bound to IL-8

In our October 31, 2013 blog article, we discussed recent structural studies of the chemokine receptors CCR5 and CXCR4. We discussed the implications of these studies for the treatment of HIV/AIDS, especially using the CCR5 inhibitor maraviroc (Pfizer’s Selzentry/Celsentri). As discussed in the article, researchers are utilizing the structural studies of CCR5 and CXCR4 to develop improved HIV entry inhibitors that target these chemokine receptors.

Meanwhile, other researchers have been studying the role of chemokine receptors in cancer biology, and the potential use of chemokine receptor antagonists in cancer treatment.

CCR5 antagonists as potential treatments for metastatic breast cancer

One group of researchers, led by Richard G. Pestell, M.D., Ph.D. (Thomas Jefferson University, Philadelphia, PA) has been studying expression of CCR5 and its ligand CCL5 (also known as RANTES) and their role in breast cancer biology and pathogenesis. Their report of this study was published in the August 1, 2012 issue of Cancer Research.

These researchers first studied the combined expression of CCL5 and CCR5 in various subtypes of breast cancer, by analyzing a microarray database of over 2,000 human breast cancer samples. (The database was compiled from 27 independent studies). They found that CCL5/CCR5 expression was preferentially expressed in the basal and HER-2 positive subpopulations of human breast cancer.

Because of the high level of unmet medical need in treatment of basal breast cancer, the authors chose to focus their study on this breast cancer subtype. As the researchers point out, patients with basal breast cancer have increased risk of metastasis and low survival rates. Basal tumors in most cases do not express either androgen receptors, estrogen receptors (ERs), or HER-2. They thus cannot be treated with such standard receptor-targeting breast cancer therapeutics as tamoxifen, aromatase inhibitors, or trastuzumab. The only treatment options are cytotoxic chemotherapy, radiation, and/or surgery. However, these treatments typically results in early relapse and metastasis.

The basal breast cancer subpopulation shows a high degree of overlap with triple-negative (TN) breast cancer. We discussed TN breast cancer, and research aimed at defining subtypes and driver signaling pathways, in our August 2, 2011 article on this blog. In that article, we noted that TN breast cancers include two basal-like subtypes, at least according to one study. Other researchers found that 71% of TN breast cancers are of basal-like subtype, and that 77% of basal-like tumors are TN. A good part of the problem is that there is no accepted definition of basal-like breast cancers, and how best to define such tumors is controversial. However, both the TN and the basal subpopulations are very difficult to treat and have poor prognoses. It is thus crucial to find novel treatment strategies for these subpopulations of breast cancer.

Dr. Pestell and his colleagues therefore investigated the role of CCL5/CCR5 signaling in three human basal breast cancer cell lines that express CCR5. They found that CCL5 promoted intracellular calcium (Ca2+) signaling in these cells. The researchers then determined the effects of CCL5/CCR5 signaling in promoting in vitro cell invasion in a 3-dimensional invasion assay. For this assay, the researchers assessed the ability of cells to move from the bottom well of a Transwell chamber, across a membrane and through a collagen plug, in response to CCL5 as a chemoattractant. The researchers found that CCR5-positive cells, but not CCR5-negative cells, showed CCL5-dependent invasion.

The researchers then studied the ability of CCR5 inhibitors to block calcium signaling and in vitro invasion. The agents that they investigated were maraviroc and vicriviroc. Maraviroc (Pfizer’s Selzentry/Celsentri) is the marketed HIV-1 entry inhibitor that we discussed in our October 31, 2013 articleVicriviroc is an experimental HIV-1 inhibitor originally developed by Schering-Plough. Schering-Plough was acquired by Merck in 2009. Merck discontinued development of vicriviroc because the drug failed to meet primary efficacy endpoints in late stage trials.

Pestell et al. found that maraviroc and vicriviroc inhibited calcium responses by 65% and 90%, respectively in one of their CCR5-positive basal cell breast cancer lines, and gave similar results in another cell line. The researchers then found that  in two different CCR5-positive basal breast cancer cell lines, both maraviroc and vicriviroc inhibited in vitro invasion.

The researchers then studied the effect of maraviroc in blocking in vivo metastasis of a CCR5-positive basal cell breast cancer line, which had been genetically labeled with a fluorescent marker to facilitate noninvasive visualization by in vivo bioluminescence imaging (BLI). They used a standard in vivo lung metastasis assay, in which cells were injected into the tail veins of immunodeficient mice, and mice were treated by oral administration with either maraviroc or vehicle. The researchers then looked for lung metastases. They found that maraviroc-treated mice showed a significant reduction in both the number and the size of lung metastases, as compared to vehicle-treated mice.

In both in vitro and in vivo studies, the researchers showed that maraviroc did not affect cell viability or proliferation. In mice with established lung metastases, maraviroc did not affect tumor growth. Maraviroc inhibits only metastasis and homing of CCR5-positive basal cell breast cancer cells, but not their viability or proliferation.

As the result of their study, the researchers propose that CCR5 antagonists such as maraviroc and vicriviroc may be useful as adjuvant antimetastatic therapies for breast basal tumors with CCR5 overexpression.  They may also be useful as adjuvant antimetastatic treatments for other tumor types where CCR5 promotes metastasis, such as prostate and gastric cancer.

As usual, it must be emphasized that although this study is promising, it is only a preclinical proof-of-principle study in mice, which must be confirmed by human clinical trials.

In an October 25, 2013 Reuters news story, it was revealed that Citi analysts believe that Merck will take vicriviroc into the clinic  in cancer patients in 2014. Citi said that it expected vicriviroc to be tested in combination with “a Merck cancer immunotherapy” across multiple cancer types, including melanoma, colorectal, breast, prostate and liver cancer. (We discussed Merck’s promising cancer immunotherapy agent lambrolizumab/MK-3475 in our June 25, 2013 blog article. But the Merck agent to be tested together with vicriviroc was not disclosed in the Reuters news story.)

Despite this news story, Merck said that it had not disclosed any plans for clinical trials of vicriviroc in cancer.

The CXCR1 antagonist reparixin as a potential treatment for breast cancer

In our In April 2012 book-length report, “Advances in the Discovery of Protein-Protein Interaction Modulators” (published by Informa’s Scrip Insights), we discussed the case of the allosteric chemokine receptor antagonist reparixin (formerly known as repertaxin). Reparixin has been under developed by Dompé Farmaceutici (Milan, Italy). This agent targets both CXCR1 and CXCR2, which are receptors for interleukin-8 (IL-8). IL-8 is a well-known proinflammatory chemokine that is a major mediator of inflammation. As we discussed in our report, reparixin had been in Phase 2 development for the prevention of primary graft dysfunction after lung and kidney transplantation. However, it failed in clinical trials.

Meanwhile, researchers at the University of Michigan (led by Max S. Wicha, M.D., the Director of the University of Michigan Comprehensive Cancer Center) and at the Institut National de la Santé et de la Recherche Médicale (INSERM) in France were working to define a breast cancer stem cell signature using gene expression profiling. They found that CXCR1 was among the genes almost exclusively expressed in breast cancer stem cells, as compared with its expression in the bulk tumor.

IL-8 promoted invasion by the cancer stem cells, as demonstrated in an in vitro invasion assay. The CXCR1-positive, IL-8 sensitive cancer stem cell population was also found to give rise to many more metastases in mice than non-stem cell breast tumor cells isolate from the same cell line. This suggested the hypothesis that a CXCR1 inhibitor such as reparixin might be used as an anti-stem cell, antimetastatic agent in the treatment of breast cancer.

Dr. Wicha and his colleagues then studied the effects of blockade of CXCR1 by either reparixin or a CXCR1-specific blocking antibody on  bulk tumor and cancer stem cells in two breast cancer cell lines. The researchers found in in vitro studies that treatment with either of these two CXCR1 antagonists selectively depleted the cell lines of cancer stem cells (which represented 2% of the tumor cell population in both cell lines).

This depletion was followed by the induction of massive apoptosis of the bulk, non-stem tumor cells. This was mediated via a bystander effect, in which CXCR1-inhibited stem cells produce the soluble death mediator FASL (FAS ligand). FASL binds to FAS receptors on the bulk tumor cells, and induces an apoptotic pathway in these cells that results in their death.

In in vivo breast cancer xenograft models, the researchers treated tumor-bearing mice with either the cytotoxic agent docetaxel, reparixin, or a combination of both agents. Docetaxel treatment–with or without reparixin–resulted in a significant inhibition of tumor growth, while reparixin alone gave only a modest reduction in tumor growth. However, treatment with docetaxel alone gave no reduction (or an increase) in the percentage of stem cells in the tumors, while reparixin–either alone or in combination with docetaxel–gave a 75% reduction in the percentage of cancer stem cells. Moreover, in in vivo metastasis studies in mice, reparixin treatment gave a major reduction in systemic metastases. These results suggest that reparixin may be useful in eliminating breast cancer stem cells and in inhibiting metastasis and thus preventing recurrence of cancer in patients treated with chemotherapy.

As we discussed in our 2012 report, Dr. Wicha’s research on reperixin might represent an opportunity for Dompé to repurpose reperixin for cancer treatment. Since the publication of the 2012 report, Dompé has been carrying out a Phase 2 pilot study of reparixin in patients diagnosed with early, operable breast cancer, prior to their treatment via surgery. The goal of this study is to investigate if cancer stem cells decrease in two early breast cancer subgroups (estrogen receptor-positive and/or progesterone receptor positive/HER-2-negative, and estrogen receptor negative/progesterone receptor negative/HER-2-negative). The goal is to compare any differences between the two subgroups in order to better identify a target population.

Dompé has thus begun the process of clinical evaluation of reparixin for the new indication–treatment of breast cancer in order to inhibit metastasis and prevent recurrence.


Researchers have found promising evidence that at least two chemokine/chemokine receptor combinations may be involved in cancer stem cell biology and thus in the processes of metastasis and cancer recurrence. In at least one case–and perhaps both–companies are in the early stages of developing small-molecule chemokine receptor antagonists for inhibiting breast cancer metastasis and recurrence. Such a strategy might be applicable to other types of cancer as well.

As discussed by Wicha et al., in immune and inflammatory processes, chemokines serve to facilitate the homing and migration of immune cells. In the case of cancer, chemokines may act as “stemokines”, by facilitating the homing of cancer stem cells in the process of metastasis. Other chemokines and their receptors than those discussed in this article may be involved in other types of cancer, and may carry out similar “stemokine” functions.

Since around 90% of cancer deaths are due to metastasis, and since effective treatments for metastatic cancers are few, this is a potentially important area of cancer research and drug development.


As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to  your company,  please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.