Biopharmconsortium Blog

Expert commentary from Haberman Associates biotechnology and pharmaceutical consulting.

Posts filed under: Cardiovascular disease

FDA approves mipomersen (Isis/Genzyme’s Kynamro)–the first systemically-delivered oligonucleotide drug to reach the market

 

Atherosclerosis. Source: Nephron http://bit.ly/jL6Zos

Atherosclerosis. Source: Nephron http://bit.ly/jL6Zos

In our November 20, 2012 Biopharmconsortium Blog article, entitled “Novel hypercholesterolemia drugs move toward FDA decisions”, we discussed two drugs–Aegerion Pharmaceuticals’ lomitapide, and Isis/Sanofi/Genzyme’s mipomersen. These drugs were nearing approval decisions by the FDA, following the recommendations of the FDA’s Endocrinologic and Metabolic Drugs Advisory Committee that both drugs be approved for treatment of homozygous familial hypercholesterolemia (HoFH).

In our December 31, 2012 blog article, we reported that the FDA had approved Aegerion’s small-molecule drug lomitapide (Juxtapid). That left us waiting for “the other shoe to drop”–the decision on the approval of mipomersen.

On January 29, 2013, Genzyme (a Sanofi company) and Isis Pharmaceuticals (Carlsbad, CA) reported that the FDA had approved mipomersen (Kynamro) for the treatment of HoFH. Mipomersen, given as a 200 mg weekly subcutaneous injection, has been approved as an adjunct to lipid-lowering medications and diet for the treatment of dyslipidemia in patients with HoFH. In contrast to mipomersen, Aegerion’s lomitapide is an oral drug.

The approval of mipomersen triggered a $25 million milestone payment to Isis from Genzyme.

MIpomersen is an antisense oligonucleotide that targets the messenger RNA for apolipoprotein B. This agent represents the first oligonucleotide drug capable of systemic delivery to be approved in a regulated market. (The two previously marketed oligonucleotide drugs both treat ophthalmologic diseases and are delivered locally.) Mipomersen targets the liver, without the need for a delivery vehicle. Thus mipomersen represents the “great hope” for proof-of-concept for oligonucleotide drugs, including antisense and  RNAi-based drugs.

In the January 29, 2013 press release, Stanley T. Crooke, M.D., Ph.D., Chairman of the Board and CEO of Isis, said:

“Kynamro is the first systemic antisense drug to reach the market and is the culmination of two decades of work to create a new, more efficient drug technology platform. As evidenced by our robust pipeline, our antisense drug discovery technology is applicable to many different diseases.” This indicates that Isis considers the approval of mipomersen as a proof-of-concept for its approach to antisense oligonucleotide drug discovery and development, and in particular for its pipeline.

Clinical trials of mipomersen

The FDA approval of mipomersen is based on the results of a randomized, double-blind, placebo-controlled, multi-center trial that enrolled 51 HoFH patients age 12 to 53 years, including 7 patients age 12 to 16 years, who were on lipid lowering medications. The trial found that mipomersen treatment further reduced LDL-cholesterol levels by an average of 113 mg/dL, or 25%, from a treated baseline of 439 mg/dL, and further reduced all measured endpoints for atherogenic particles. In March 2010, these data were published in The Lancet.

Safely data for mipomersen are based on pooled results from four Phase 3 trials. Eighteen percent of patients on the drug and 2% of patients on placebo discontinued treatment due to adverse effects. The most common adverse effects of mipomersen treatment were injection site reactions, increases in the liver enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) , flu-like symptoms, and an abnormal liver function test.

As a result of these safety findings, the label for Kynamro contains a Boxed Warning citing the risk of hepatic toxicity. The label for Aegerion’s Juxtapid (lomitapide) also contains such a Boxed Warning. A Boxed Warning is the strongest warning that the FDA requires.

The FDA is also requiring four postmarketing studies of mipomersen, and wants the developers to carefully track the long-term safety of the drug.

As an antisense drug, mipomersen is metabolized without affecting the CYP450 pathways used in commonly prescribed drugs. It thus is potentially free of drug-drug interactions. No clinically relevant pharmacokinetic interactions were reported between mipomersen and warfarin, or between mipomersen and simvastatin or ezetimibe.

The safety and effectiveness of mipomersen have not been established in patients with hypercholesterolemia who do not have HoFH. Nor has the effect of mipomersen on cardiovascular morbidity and mortality been determined.

Because of the risk of hepatotoxicity, mipomersen is available only through a Risk Evaluation and Mitigation Strategy (REMS) called the Kynamro REMS. The goals of the REMS are:

  • To educate prescribers about the risk of hepatotoxicity associated with the use of mipomersen, and the need to monitor patients during treatment with mipomersen as per product labeling.
  • To restrict access to therapy with mipomersen to patients with a clinical or laboratory diagnosis consistent with homozygous familial hypercholesterolemia (HoFH).

Genzyme has also developed an HoFH and Kynamro support program for healthcare providers, patients, and their families.

Wider implications of the FDA approval of mipomersen

Mipomersen achieved FDA approval despite an unenthusiastic 9-6 recommendation for approval by the FDA’s Endocrinologic and Metabolic Drugs Advisory Committee. This compares to a 13-2 vote to recommend approval of lomitapide. Meanwhile, mipomersen received a negative opinion from a European Medicines Agency panel. And it faces strong competition in the market from lomitapide. Therefore, mipomersen is unlikely to become a large-selling drug.

Nevertheless, Sanofi has been positioning itself around Genzyme (and its rare disease platform) in its drug discovery and development strategy. Therefore, any and all Genzyme/Sanofi drug approvals represent important victories.

Although the FDA Advisory Committee and industry commentators favor lomitapide over mipomersen, they also believe that not all patients with HoFH would be likely to benefit from only one drug. Thus having two alternative drugs may well be better in treating this disease.

Does the approval of mipomersen herald a new age of oligonucleotide drugs? The first antisense agent to reach the market, fomivirsen (Isis/ Novartis Ophthalmics’ Vitravene), which is indicated for treatment of cytomegalovirus retinitis in AIDS patients was approved in 1998. However, it is delivered locally to the eye, and has not been profitable.

Even though mipomersen is unlikely to become a large-selling drug, it could become the first commercially successful antisense agent. As stated by Arthur Krieg, M.D., chief executive of RaNA Therapeutics, “What many people have been waiting for is validation where someone actually makes a profit and where patients actually benefit.”

As we have discussed in earlier blog posts, oligonucleotide drugs (especially antisense and RNAi) represent a premature technology. It is therefore not unusual that it would take over 20 years for the first profitable drug in this class to reach the market. This was also recently stated by Dr. Crooke.

Finally, as we stated in our November 20, 2012 blog article:

For oligonucleotide drug developers and enthusiasts, the case of mipomersen–considered the “great hope” for proof-of-concept for oligonucleotide drugs by many in the field–provides several lessons. 1. At the end of the day, oligonucleotide drugs must meet the same standards of safety and efficacy as other drugs. 2. Oligonucleotide drugs may encounter competition from drugs in other classes, such as small molecules or monoclonal antibodies.

________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or an initial one-to-one consultation on an issue that is key to your company’s success, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

HDL drug update

 

Niacin

Niacin

We have published two articles on high-density lipoprotein (HDL, or “good cholesterol”) raising drugs on this blog:

The more recent of these article has received quite a few hits lately. This is probably because of recent news of a clinical trial failure in the HDL drug field. It therefore seems appropriate to publish an update on HDL-raising drug clinical trials, in order to bring our blog up to date.

Update on the trials and tribulations of niacin-based HDL-raising drugs

As of the time of our June 1, 2011 article, high-dose niacin was the only drug that was approved by the FDA for raising HDL. However, generic high-dose niacin can cause adverse effects such as skin flushing and itching. Therefore, two companies, Abbott and Merck, were developing high-dose niacin-based products designed to reduce these adverse effects.

In May 2011, as discussed in our June 1, 2011 article, the National Heart Lung and Blood Institute (NHLBI) of the National Institutes of Health (NIH) stopped a large clinical trial (known as AIM-HIGH) of Abbott’s Niaspan, an extended-release formulation of high-dose niacin, because the drug failed to prevent heart attacks and strokes. There was also a small increased rate of strokes in patients taking Niaspan, which researchers cautioned may have been due to chance. Niaspan remains an FDA-approved drug, and it is now owned by Abbot spin-off AbbVie. However, Niaspan is scheduled to go off-patent later in 2013.

Merck’s high-dose non-flushing niacin product is known as Tredaptive or Cordaptive in different markets. It is a combination product consisting of extended-release high dose niacin plus laropiprant. Laropiprant is designed to block the ability of prostaglandin D2 to cause skin flushing; niacin-induced skin flushing works via the action of prostaglandin D2 in the skin.

In 2008, the FDA rejected Merck’s New Drug Application for Tredaptive/Cordaptive, so the drug remained investigational in the US. However, in 2009 Merck launched Tredaptive in international markets including Mexico, the UK and Germany. The drug has been approved in over 45 countries. Merck had also been conducting a 25,000-person trial of Tredaptive for reducing the rate of cardiovascular events in patients who are at risk for cardiovascular disease (CVD). Merck intended to file for approval of the drug in the US in 2012, based on the results of this trial if it had been positive.

However, on December 20, 2012, Merck announced that its clinic trial of Tredaptive, known as the HPS2-THRIVE Study (Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events), did not achieve its primary endpoint.

As a result of this finding, Merck does not plan to seek regulatory approval for this medicine in the United States. It also–as of January 11, 2013–began a recall of Tredaptive in the 40 countries in which it had been approved. The  HPS2-THRIVE Study not only showed that Tredaptive was of no benefit in reducing cardiovascular events in high-risk patients on statins, but it also significantly raised the incidence of such adverse effects as blood, lymph and gastrointestinal problems, as well as respiratory and skin issues.

The results of a new study published online on February 26 2013 showed that around a quarter of all patients taking the niacin/laropiprant combination Tredaptive had dropped out of the trial–compared to fewer than 17% in the placebo arm.  This was mostly due to itching, rashes, indigestion and muscle problems. There were also dozens of serious reactions, including 29 cases of myopathy.

Skin-related adverse effects seen in some patients with Tredaptive resemble those seen with high-dose niacin. The addition of laropiprant was supposed to ameliorate these adverse effects, but may not have done so in all patients. As for the serious adverse effects such as myopathy, several medical researchers assert that it is not known whether niacin, laropiprant or drug-drug interactions between these two agents and/or the statin (simvastatin) used in the study was responsible. Simvastatin is known to have adverse interactions with certain other drugs. Moreover, one-third of subjects enrolled in HPS2-THRIVE were Chinese, a patient population that is known to be more sensitive to the effects of statins, especially the 40-milligram dose of simvastatin used in the trial. It was the Chinese patients enrolled in the trial who showed the highest risk of myopathy.

In addition, some of the researchers question whether laropiprant is a “clean drug” that has no effects on atherosclerosis and thrombosis. A recent study has shown aneurysm formation and accelerated atherogenesis in mice with deleted prostaglandin D2 receptors; these receptors are the target of laropiprant. Thus the use of laropiprant may have been a factor in the failure of the trial, as well as in the adverse effects seen in patients treated with the niacin/laropiprant combination.

Full results of the HPS2-THRIVE study will be presented by lead investigator Dr Jane Armitage (Oxford University, UK) on March 9, 2013 at the American College of Cardiology 2013 Scientific Sessions (San Francisco, CA.)

Thus–although generic niacin and Niaspan remain FDA-approved HDL-raising drugs–the results of the AIM-HIGH and the HPS2-THRIVE studies have put niacin-based HDL-raising drugs–and the whole HDL-raising drug field–under a cloud.

Update on development of CETP inhibitors

As discussed in our earlier articles, the development of cholesteryl ester transfer protein (CETP) inhibitors has been a particular focus of several pharmaceutical companies.  CETP catalyzes the transfer of cholesteryl esters and triglycerides between LDL/VLDL and HDL, and vice versa. In vivo (in animals and in humans), CETP inhibitor drugs raise HDL and lower LDL.

The clinical failure of Pfizer’s CETP inhibitor torcetrapib in 2006 put a severe damper on development of drugs in this class. However, the toxicity of torcetrapib was found to be due to an off-target effect, and other CETP inhibitors do not display this toxicity. Thus companies have been developing three CETP inhibitors: Roche’s dalcetrapib, Merck’s anacetrapib, and Lilly’s evacetrapib.

However, on May 7, 2012 Roche announced that it had–following the recommendation of an independent group of experts (the Data and Safety Monitoring Board)–halted its Phase 3 trial of dalcetrapib “due to a lack of clinically meaningful efficacy.”

Dalcetrapib’s lack of efficacy might possibly be due to its relatively low potency in raising HDL. Dalcetrapib boosted HDL by 30%, as compared to 138% for anacetrapib and 130% for evacetrapib, depending on the dose. Moreover, anacetrapib and evacetrapib, unlike dalcetrapib, also lower LDL (“bad cholesterol”).

Currently, anacetrapib and evacetrapib are being evaluated in large Phase 3 clinical trials–REVEAL (Randomized EValuation of the Effects of Anacetrapib Through Lipid-modification) and ACCELERATE (A Study of Evacetrapib in High-Risk Vascular Disease), respectively.

Is HDL-raising drug development high-stakes gambling or rational clinical research?

Given the lack of success–so far–in developing a safe HDL-raising drug that lowers the frequency of cardiovascular events in high-risk patients, some commentators speculate that attempting to develop HDL-raising drugs such as CETP inhibitors might be a form of high-stakes gambling. Chemist and leading pharmaceutical industry blogger Derek Lowe in particular takes this point of view. As we discussed in our June 1, 2011 article, the biology of HDL is complex. For example, HDL particles in blood serum are heterogeneous, with some HDL particles having a greater degree of positive effects on atherosclerotic plaque biology than others. As a result, treatments (e.g., drugs, diet) that raise HDL, as determined by standard clinical assays for serum HDL, may not necessarily result in clinical benefit, because of qualitative changes in populations of HDL particles.

The unknowns of HDL biology, combined with the need to conduct huge expensive clinical trials and the big payoffs for success in the large dyslipidemia market, convinced Derek Lowe that CETP inhibitor development more resembles gambling (in which only Big Pharmas can play) than rational clinical research. The same, according to Lowe, applies to Alzheimer’s disease drug development. According to Lowe, Big Pharmas may be undertaking these “go-for-the-biggest-markets-and-hope-for-the-best” research undertakings because they think that success in large markets are the only things that can rescue them.

Nevertheless, Steven Nissen, M.D. (chief of cardiovascular medicine at Cleveland Clinic), a veteran HDL researcher who has often been critical of the pharmaceutical industry, persists in running clinical studies of novel HDL-raising drugs. Although he considered dalcetrapib a “long-shot”, he continues to believe that anacetrapib and evacetrapib have a reasonable chance of success. And he has expressed particular enthusiasm for anacetrapib.

Dr. Nissen is involved in clinical trials of Resverlogix’s epigenetic agent RVX-208, a first-in-class small-molecule drug related to resveratrol that induces endogenous production of the protein component of HDL, apolipoprotein A1. On August 28, 2012, Resverlogix reported that RXV-208 significantly increased HDL-C, the primary endpoint of a Phase 2b clinical trial known as SUSTAIN. SUSTAIN also successfully met secondary endpoints–showed increases in levels of Apo-AI and large HDL particles. Both of these are believed to be important factors in enhancing reverse cholesterol transport activity. Safety data from SUSTAIN indicate that increases in the liver enzyme alanine aminotransferase (ALT) reported in previous trials were infrequent and transient, with no new increases observed beyond week 12 of the 24-week trial. Thus the drug appears to be suitable for chronic use.

Thus, despite the features of CETP-inhibitor clinical trials that resemble high-stakes gambling, we must wait for the results of the clinical trials to draw any meaningful conclusions about the prospects for development of these agents. Moreover, other approaches to developing HDL-raising drugs, such as Resverlogix’ epigenetic strategy, may turn out to be superior to older approaches. And as with Alzheimer’s disease, continuing studies on the basic biology of HDL may eventually yield breakthrough strategies to discovery and development of novel antiatherosclerotic drugs.

_________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to  your company,  please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

FDA Approves Aegerion’s lomitapide (Juxtapid) for Homozygous Familial Hypercholesterolemia

 

Happy New Year from Haberman Associates!

Happy New Year from Haberman Associates!

In our November 20, 2012 article on this blog, entitled “Novel hypercholesterolemia drugs move toward FDA decisions”, we discussed two drugs–Aegerion Pharmaceuticals’ lomitapide, and Isis/Sanofi/Genzyme’s mipomersen. In October 2012, the FDA’s Endocrinologic and Metabolic Drugs Advisory Committee recommended that both drugs be approved for treatment of homozygous familial hypercholesterolemia (HoFH).

In that article, we discussed issues involved in the development and commercialization of lomitapide–a small-molecule drug, and mipomersen–an antisense oligonucleotide, for treatment of HoFH, a rare genetic disease which is mechanistically related to more common types of hypercholesterolemia. We also stated that were were awaiting FDA action–expected in the next several weeks after publication of our article–on the approval of the two drugs.

On Christmas Eve–December 24, 2012–a day on which few people in the United States and in many other countries were thinking about work–Aegerion (Cambridge, MA) announced that the FDA had approved lomitapide for treatment of HoFH. Lomitapide has been given the brand name Juxtapid.

The FDA based its approval of lomitapide on the results of a pivotal Phase 3 study, which evaluated the safety and effectiveness of the drug in 29 adult patients with HoFH. As we discussed in our November 20, 2012 article, the results of this study were published in the online version of The Lancet on November 2, 2012.

As we also discussed in our earlier article, lomitapide has serious adverse effects, including hepatic fat accumulation and elevated liver aminotransferase levels. According to the December 24, 2012 Aegerion press release, the most common adverse reactions seen in the Phase 3 study were gastrointestinal, including diarrhea, nausea, vomiting, dyspepsia and abdominal pain. Ten of the 29 patients in the study had at least one elevation in liver enzymes greater than or equal to three times the upper limit of normal. Liver enzyme elevations were managed through dose reduction or temporary discontinuation of dose. Hepatic fat accumulation was also observed in the Phase 3 trial.

As we also discussed in our earlier article, a finding of elevated liver aminotransferase levels is enough to stop development of most drugs. As of October 2012, the FDA and its Advisory Panel believed that a risk evaluation and mitigation strategy (REMS) would support appropriate use of these drugs in patients with homozygous FH, because of their life threatening disease, and because they have limited therapeutic options.

According to the December 24, 2012 Aegerion press release, the label for lomitapide contains a Boxed Warning citing the risk of hepatic toxicity. A Boxed Warning is the strongest warning that the FDA requires.

Lomitapide is avaiable only through the Juxtapid Risk Evaluation and Mitigation Strategy (REMS) Program. Aegerion will certify all health care providers who prescribe Juxtapid and the pharmacies that will dispense the medicine.

The goals of the REMS are:

  • To educate prescribers about the risk of hepatotoxicity associated with the use of lomitapide, and the need to monitor patients during treatment with the drug.
  • To restrict access to therapy with lomitapide to patients with a clinical or laboratory diagnosis consistent with HoFH.

The safety and efficacy of lomitapide have not been established in patients with hypercholesterolemia who do not have HoFH. The effects of the drug on cardiovascular morbidity and mortality has not been determined. The safety and effectiveness of lomitapide have not been established in pediatric patients.

In addition to establishing the REMS, Aegerion has made a commitment to the FDA to conduct a post-approval, observational cohort study.  The company has also developed a comprehensive support services program for patients and their healthcare providers.

As we discussed in our November 20, 2012 article, Aegerion will be marketing lomitapide on its own, without a larger partner, and has been ramping up its marketing and sales organization in anticipation of approval. The company has set up a website for the product, www.juxtapid.com.

We await the FDA’s decision on the approval of mipomersen, to see how this chapter in the hypercholesterolemia drug development story will unfold.

________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or an initial one-to-one consultation on an issue that is key to your company’s success, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Novel hypercholesterolemia drugs move toward FDA decisions

 

Lomitapide

Lomitapide

Mid-October 2012 was a busy time for the FDA’s Endocrinologic and Metabolic Drugs Advisory Committee. On October 17, 2012, the panel voted 13-2 to recommend approval of Aegerion’s lomitapide for treatment of homozygous familial hypercholesterolemia. The next day, October 18, 2012, the same panel voted 9-6 to recommend approval of Isis/Sanofi/Genzyme’s mipomersen for the same condition.

Familial hypercholesterolemia (FH) is a rare genetic condition characterized by very high levels of low-density lipoprotein (LDL, or “bad cholesterol”), in the blood and early cardiovascular disease. Most patients with FH have mutations in either the LDL receptor (which functions to remove LDL from the circulation), or in apolipoprotein B (ApoB) (the protein moiety of LDL, which binds to the LDL receptor).

Patients who are heterozygous for an FH mutation (but have one normal copy of the affected gene) may have premature cardiovascular disease in their thirties. Patients who are homozygous for an FH mutation may have severe cardiovascular disease in childhood. Heterozygous FH is a common genetic disease, which is inherited in an autosomal dominant pattern, and occurs in one out of 500 people. Homozygous FH, however, occurs in about 1 in a million births. Homozygous FH thus qualifies as a “rare disease”.

Physicians generally treat heterozygous FH with statins, bile acid sequestrants or other lipid-lowering agents that lower cholesterol levels. Homozygous FH often does not respond to these drugs. It may require chronic treatment via LDL apheresis (removal of LDL in a method similar to dialysis) and in some cases liver transplantation.

Aegerion (Cambridge, MA), the developer of lomitapide, is a publicly-traded biotech company that seeks to “change the way that rare, genetic lipid disorders are treated”. It is currently focused on the development of lomitapide, a small-molecule compound (pictured above).

Lomitapide inhibits the microsomal triglyceride transfer protein (MTTP) which is necessary for very low-density lipoprotein (VLDL) assembly and secretion in the liver. A 2007 article in the New England Journal of Medicine (NEJM) concluded that inhibition of MTTP by lomitapide (then known as BMS-201038) resulted in the reduction of LDL cholesterol levels in patients with homozygous FH. BMS-201038/lomitapide was originally developed by Bristol-Myers Squibb (BMS), donated to the University of Pennsylvania in 2003 and licensed to Aegerion in 2006. BMS had abandoned development of the compound after early Phase 1 and Phase 2 trials had found increases in heptatic fat content and gastrointestinal disturbances. The NEJM study (conducted by Penn researchers in collaboration with other academic researchers and with BMS) also found that therapy with the compound was associated with elevated liver aminotransferase levels and hepatic fat accumulation.

78-week data from Aegerion’s pivotal Phase 3 study of lomitapide in adults patients with homozygous FH were published in the online version of The Lancet on November 2, 2012.

Mipomersen (which will be called Kynamro if and when it is commercialized) is an antisense oligonucleotide that targets the messenger RNA for apolipoprotein B. We discussed mipomersen in our August 21, 2009 blog article on oligonucleotide therapeutics. Mipomersen represents the most advanced oligonucleotide drug in development that is capable of systemic delivery. (The only two marketed oligonucleotide drugs both treat ophthalmologic diseases and are delivered locally.) Mipomersen targets the liver, without the need for a delivery vehicle. Thus mipomersen–potentially the first systemically-delivered oligonucleotide drug to reach the market–represents the “great hope” for proof-of-concept for oligonucleotide drugs, including antisense and  RNAi-based drugs.

Patients treated with mipomersen, as with lomitapide, exhibit liver-related adverse effects, especially hepatic fat accumulation and elevated liver aminotransferase levels. Moreover, unlike lomitapide, which is an orally-delivered compound, mipomersen, which is delivered via subcutaneous injection, can cause injection site reactions and flu-like symptoms. Moreoever, mipomersen has a much longer half-life than lomitapide (30 days versus 20 hours).

Industry commentators, and well as the FDA Advisory Committee, generally favor lomitapide over mipomersen, because lomitapide appears to be the more efficacious drug in lowering LDL-cholesterol, and also because lomitapide is an oral drug. However, most of the FDA panelists, as well as other industry commentators believe that not all patients with homozygous FH would be likely to benefit from only one drug. Thus having two alternative drugs may well be better in treating this disease.

Both lomitapide and mipomersen have potentially serious adverse effects. A finding of elevated liver aminotransferase levels is enough to stop development of most drugs. However, the FDA and its Advisory Panel believe that a risk evaluation and mitigation strategy (REMS) would support appropriate use of these drugs in patients with homozygous FH, because of their life threatening disease, and because they have limited therapeutic options. Both Aegerion and Genzyme are proposing that their compounds be approved with REMS programs, including an education program for physicians and active monitoring of patients. The REMS program would also include monitoring to ensure that only adult homozygous FH patients would be treated with the drugs. However, Aegerion plans to conduct clinical trials of the use of lomitapide in pediatric homozygous FH patients, as well as patients with another rare disease, familial chylomicronemia. Genzyme has already tested mipomersen in a small number of pediatric patients.

Companies developing therapeutics for rare diseases whose mechanisms are related to those of more common diseases often attempt to first get their drugs approved for the rare disease, and then perform additional clinical trials to expand the drug’s indications to larger populations. We discussed this strategy in an earlier article on this blog. Homozygous FH is mechanistically related to not only heterozygous FH, but also to cases of severe hypercholesterolemia that are poorly controlled by statins. Both companies have shown interest in treating patients with homozygous FH and severe hypercholesterolemia, since they have preformed clinical trials that included patients with these conditions. However, the adverse effects of these drugs may limit their use to homozygous FH, at least in the near future.

Aegerion intends to market lomitapide on its own, and is ramping up its marketing and sales organization in anticipation of approval. Mipomersen, if approved, would have the benefit of the Sanofi marketing organization behind it. However, industry commentators expect lomitapide to have a large advantage over mipomersen, if both are approved. That is because of the greater efficacy of lomitapide, its oral dosing, and other factors related to injection site reactions for mipomersen and the half-lives of the compounds.

We await FDA action in the next several weeks on the approval of lomitapide and mipomersen.

Meanwhile, researchers and companies are working on potential drugs for severe hypercholesterolemia that act via an entirely different mechanism–PCSK9 (proprotein convertase subtilisin/kexin 9) inhibition. These drugs are in an earlier stage of development than lomitapide and mipomersen. However, they might eventually provide strong competition to these drugs, or replace them altogether.

For oligonucleotide drug developers and enthusiasts, the case of mipomersen–considered the “great hope” for proof-of-concept for oligonucleotide drugs by many in the field–provides several lessons. 1. At the end of the day, oligonucleotide drugs must meet the same standards of safety and efficacy as other drugs. 2. Oligonucleotide drugs may encounter competition from drugs in other classes, such as small molecules or monoclonal antibodies.

________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or an initial one-to-one consultation on an issue that is key to your company’s success, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Advances in the Discovery of Protein-Protein Interaction Modulators published by Informa’s Scrip Insights

 

Eltrombopag

On April 13, 2012, Informa’s Scrip Insights announced the publication of a new book-length report, Advances in the Discovery of Protein-Protein Interaction Modulators, by Allan B. Haberman, Ph.D.

Protein-protein interactions (PPIs) are of central importance in biochemical pathways, including pathways involved in disease processes. However, PPIs have been considered the prototypical “undruggable” or “challenging” targets. The discovery of small-molecule drugs that can serve as antagonists or agonists of PPIs, and which are capable of being successfully taken into human clinical trials, has been extremely difficult. Among the theoretical reasons for this is that contact surfaces involved in PPIs are usually large and flat, and lack the types of cavities present in the surfaces of proteins that bind to small-molecule ligands.

Nevertheless, over the last twenty years, researchers have developed a set of technologies and strategies that have enabled them, in a several cases, to discover developable small-molecule PPI modulators. One direct PPI agonist, the thrombopoietin mimetic eltrombopag (Ligand/GlaxoSmithKline’s Promacta/Revolade), has reached the market. The chemical structure of this compound is illustrated in the figure above. Several other small-molecule PPI modulators are in clinical trials. Despite this progress, the discovery and development of small-molecule PPI modulators has been one-at-a-time, slow and laborious.

The new strategic importance of protein-protein interactions as drug targets

Meanwhile, PPIs as potential drug targets have acquired a key strategic importance for the success of the pharmaceutical industry. Over at least the last decade, pharmaceutical R&D has failed to develop enough high-valued new drugs to make up for or exceed revenues from blockbusters that are losing patent protection. As we have discussed in previous publications and in articles on this blog, this low productivity is mainly due to pipeline attrition. There are several factors (ranging from target selection through drug design, preclinical studies, identification and use of biomarkers, and design of clinical trials) that can influence pipeline attrition.

However, increasing numbers of industry leaders and analysts identify target selection as the key factor that is limiting the productivity of pharmaceutical R&D. For example, I served as a workshop leader at Hanson Wade’s “World Drug Targets Summit”  last summer, which took that point of view. There are at least several such conferences throughout the year, which are organized at the request of industry leaders.

Industry experts who identify poor target selection as a major cause of pharma R&D’s productivity woes conclude that the main issue is that companies are running out of “druggable” targets that have not already been addressed by marketed drugs. As of 2011, only 2% of human proteins have been targeted with drugs. Most of the remaining disease-relevant proteins, including transcription factors and many other types of signaling proteins, work via interacting with other proteins in PPIs. Therefore, in order to reverse its R&D slump, the pharmaceutical industry needs to develop technologies and strategies to address PPIs and other hitherto “undruggable” targets.

Contents of the report

Our report discusses technologies and strategies that enable the discovery of drugs targeting PPIs, including both small-molecule and synthetic peptidic modulators. It includes case studies on the discovery of compounds that address specific target classes, with emphasis on agents that have reached human clinical studies. This includes addressing the issue of the need to produce PPI modulatory agents that have pharmacological properties that will enable them to be good clinical candidates.

The report also includes discussions of second-generation technologies for the discovery of small-molecule and peptidic PPI modulators, which have been developed by such companies as Forma, Ensemble, and Aileron, and by academic laboratories. The field of PPI modulator discovery has represented a “premature technology”, i.e., a field of biomedical science in which consistent practicable therapeutic applications are in the indefinite future, due to difficult technological hurdles. We have discussed premature technologies on earlier articles on this blog. The second-generation technologies are designed to overcome the hurdles and to thus enable a more accelerated and systematic approach to PPI drug discovery and development.

In part as the result of the development of these technologies, and of the increasing strategic importance of PPI modulator development, companies have been moving into the field. Examples include Bristol-Myers Squibb, Pfizer, Novartis, and Roche. A key issue is to what extent the new technologies for PPI modulator R&D will enable this area to be commercially successful, and to meet the strategic needs of the industry for expanding the universe of targets for which drugs can be developed.

For more information about Advances in the Discovery of Protein-Protein Interaction Modulators, or to order the report, see the Scrip Insights website.

__________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to  your company, please click here. We also welcome your comments on this or any other article on this blog.

How can we fix the clinical trial system?

 

http://bit.ly/dGrWW3

In recent months, there have been quite a few articles on the need to fix the clinical trial system. Among the most recent articles is the one by Boston-based Nature writer Heidi Ledford, Ph.D. published as a News Feature in the 29 September issue of Nature. In my humble opinion, this is the best article on the subject among those that have been published recently.

The pharmaceutical/biotechnology industry is frustrated with the increasing expense and the low output of the clinical trial system. This low productivity is economically unsustainable. The current clinical trial paradigm is over 50 years old. Back in the 1960s, the norm was to conduct single trials at single sites, each designed to answer a single question.

Nowadays, the norm is the large, multicenter clinical trial, especially for Phase 3 trials. “Multicenter” means that a trial is conducted at multiple sites, often in different countries, and could involve thousands of investigators and staff members. As pointed out in Dr.Ledford’s article, the large trials are mandated by the need in our more risk-adverse world to detect safety issues that occur in only a small percentage of patients, and to obtain good statistics for drugs that confer only a small benefit over the standard of care. However, certain major diseases require large trials of long duration even for drugs that may confer large benefits. For example, because the percentage of patients per year in cardiovascular disease (CVD) trials who experience cardiovascular events is small, these trials must be large and multiyear, in order to see any benefit even for a breakthrough drug.

The advent of personalized medicine–developing drugs and combinations of drugs that are specific for the molecular mechanism behind a patient’s disease–has put additional burdens on the clinical trial system. A disease may be found to be a collection of rare diseases in terms of mechanistic subtypes, each of which affects only a small number of people. This makes patient recruitment difficult.

As stated by Dr.Ledford, “Solving the problem may require fundamental changes to the clinical-trial system to make it faster, cheaper, more adaptable and more in tune with modern molecular medicine.”

Don’t use an “e-commerce” approach to determining drug efficacy!

Other commentators have recently noted the need to make clinical trials “faster, cheaper, and more adaptable.” Several of them have suggested bringing in strategies from other industries, especially e-commerce and social media.

For example, in an editorial published in the 23 September issue of Science, Andrew Grove, the former Chief Executive Officer of Intel, proposes moving towards an “e-trial” system, based on such large-scale e-commerce platforms as that of Amazon.com. Under the proposed e-trial system, the FDA would ensure safety only, not efficacy, and would continue to regulate Phase 1 trials. Once Phase 1 trials have been successfully completed, patients would be able to obtain a new drug through qualified physicians.

Patients’ responses to a drug would be stored in a database, along with their medical histories. There would be measures to protect a patient’s identity, and the database would be accessible to qualified medical researchers as a “commons.” The response of any patient or group of patients to a drug or treatment could then be tracked and compared to those of others in the database who were treated in a different manner or were untreated. These comparisons would provide insights into a drug’s efficacy, and how individuals or subgroups (perhaps defined in part via biomarkers) respond to the drug. This would liberate clinical trials from the “tyranny of the average” that characterize most trials today. As the database grows over time, analysis of the data would also provide information needed for postmarketing studies and comparative effectiveness studies.

Dr. Grove’s proposal is one of several in which the mandate of the FDA (and regulatory agencies in Europe, Japan, etc.) is to regulate safety only (via Phase 1 clinical trials) not efficacy. Efficacy is then determined via some sort of open system, with information gathered and provided to patients and physicians electronically, via systems reminiscent of e-commerce or social media.

We are opposed to removing efficacy from the oversight of the FDA and other regulatory agencies. There are two reasons for this, both of which are illustrated graphically in Box 1 of Dr. Ledford’s article, entitled “the clinical trial cliff”. Approximately half of Phase 2 clinical trials between 2008 and 2010 failed due to inability to demonstrate efficacy. (Around one-third of Phase 2 failures were due to safety, and the remaining failures were mainly due to strategic decisions to terminate a drug.) Among Phase 3 failures between 2007 and 2010, around two-thirds were due to efficacy, and around one-quarter were due to safety. These results indicate that the majority of drugs entered into clinical trials lack efficacy.

The second reason is that many safety problems–especially the rarer safety issues that occur in only a small percentage of patients–are typically not detected in Phase 1, but in Phase 3 and even the postmarking period.

Reduce clinical attrition with new trial designs and improved animal models

Dr. Ledford’s proposals for fixing clinical trials leave regulatory agencies in charge of overseeing both safety and efficacy. They mainly focus on improving clinical trials by reducing “attrition”–i.e., failure of drugs in the clinic, especially in Phase 2 and Phase 3, and on improving patient recruitment. Haberman Associates has produced publications–as well as articles on this blog–during the 2009-2011 period that provide a more in-depth discussion of strategies for reducing attrition than is possible in a 3-page article such as Dr. Ledford’s.

Two of Dr. Ledford’s strategies involve modifications of clinical trial design. Both of these are discussed in Chapter 6 of our book-length Cambridge Healthtech Institute (CHI) Insight Pharma Report, Approaches to Reducing Phase II Attrition. The first is the “Phase 0” trial. This is a type of pre-Phase 1 clinical trial, which uses microdoses of a drug to assess such parameters as pharmacokinetics and target occupancy. As Dr. Ledford suggests, in some cases Phase 0 trials can reduce or eliminate pharmacological testing in animals, and allow researchers to get human data more quickly.

The other trial design strategy mentioned in Dr, Ledford’s article is the use of adaptive clinical trials. This type of trial allows researchers to change the course of a trial in response to trial results. For example, this may mean assigning new patients to specific doses, changing the numbers of patients assigned to each arm of a trial, and changes in hypotheses or endpoints. Monitoring and changing the trial is typically done by an independent data monitoring committee [DMC] so that ideally, double-blind conditions are maintained.

As Dr. Ledford states, adaptive clinical trials may result in shortening the time and cost of the clinical trial process. But, as with Phase 0 microdosing trials, there are many controversies surrounding adaptive clinical trials. Both of these strategies are works in progress.

The other strategy for reducing attrition discussed in Dr. Ledford’s article is to use improved animal models (i.e., animal models designed to more faithfully model human disease) in preclinical studies. We discussed this strategy in Approaches to Reducing Phase II Attrition, and in greater detail in another book-length report, Animal Models for Therapeutic Strategies. I also recently led the workshop “Developing Improved Animal Models in Oncology and CNS Diseases to Increase Drug Discovery and Development Capabilities” at Hanson Wade’s 2011 World Drug Targets Summit.

Several articles on our Biopharmconsortium Blog also focus on improved animal models for predicting efficacy of drug candidates in discovery research and in preclinical studies. Our April 15, 2010 blog post, based on an article in The Scientist, focused on “co-clinical mouse/human trials”. This type of clinical trial was developed by Pier Paolo Pandolfi, MD, PhD (Director, Cancer and Genetics Program, Beth Israel-Deaconess Medical Center Cancer Center and the Dana-Farber/Harvard Cancer Center) and his colleagues.

These trials utilize genetically engineered transgenic mouse strains that have genetic changes that mimic those found in specific human cancers. These mouse models spontaneous develop cancers that resemble the corresponding human cancers. In the co-clinical mouse/human trials, researchers simultaneous treat a genetically engineered mouse model and patients with tumors that exhibit the same set of genetic changes with the same experimental targeted drugs. The goal is to determine to what extent the mouse models are predictive of patient response to therapeutic agents, and of tumor progression and survival. The studies may thus result in validated mouse models that are more predictive of drug efficacy than the currently standard xenograft models.

The new Ledford Nature article discusses co-clinical trials as a means to develop more predictive animal model studies–not only using improved, potentially more predictive animal models, but also treating these animals in similar way (in terms of doses, formulations, schedules of medication, etc.) to the humans in the parallel human clinical trial.

The Ledford article mentions the animal-model portion of a co-clinical trial, which was published in January 2011. This trial utilized two genetically-engineered PDGF (platelet-derived growth factor)-driven mouse models of the brain tumor glioblastoma multiforme (GBM), one of which has an intact PTEN gene and the other of which is PTEN deficient.

Unlike the “standard” mouse xenograft models, these models more closely mimicked the human disease, including growth of tumors within the brain, not subcutaneously. Thus any drug administered to these mice systemically (e.g., intraperitoneally, as was done in this study) had to cross the blood-brain barrier (BBB), as in the case of human clinical trials. This would not be the case with a standard xenograft model, which is one deficiency of these models for brain tumors such as GBM.

GBM is both the most common and the most malignant primary brain tumor in adults. It has a poor prognosis. PDGF-driven GBMs, which results from deregulation of the PDGF receptor (PDGFR) or overexpression of PDGF, account for about 25-30% of human GBMs. These mutations result in the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. These tumors may also exhibit mutation or loss of heterozygosity of the tumor suppressor PTEN, which also upregulates the PI3K/Akt/mTOR pathway.

The researchers tested the Akt inhibitor perifosine (Keryx Biopharmaceuticals, an alkylphospholipid) and the mTOR inhibitor CCI-779 (temsirolimus; Pfizer’s Torisel; originally developed by Wyeth prior to the Pfizer merger and approved for treatment of renal cell carcinoma), both alone and in combination, in vitro and in vivo. Specifically, the drugs and drug combinations were tested in cultured primary glioma cell cultures derived from the PTEN-null and PTEN-intact mouse PDGF-driven GBM models, and in the animal models themselves.

The studies showed that both in vitro and in vivo, the most effective inhibition of Akt and mTOR activity in both PTEN-intact and PTEN-null cells or animals was achieved by using both inhibitors in combination.  In vivo, the decreased Akt and mTOR signaling seen in mice treated with the combination therapy correlated with decreased tumor cell proliferation and increased cell death; these changes were independent of PTEN status. The co-clinical animal study also suggested new ways of screening GBM patients for inclusion in clinical trials of treatment with perifosine and/or CCI-779.

According to Dr. Ledford’s Nature article, the National Cancer Institute (NCI) invested $4.2 million in Dr. Pandolfi’s co-clinical trials in prostate and lung cancer in 2009. In addition to the co-clinical trials with genetically-engineered mouse models run by Dr. Pandolfi and others, researchers at the Jackson Laboratory are conducting co-clinical trials with mouse xenograft models that receive tumor cells from patients to be treated in human clinical trials.

Use patient registries in recruitment of patients for clinical trials

In Dr, Ledford’s article, she discusses a crucial factor other than clinical attrition that hinders progress in conducting clinical trials–patient recruitment. According to the article, at least 90% of trials are extended by at least six weeks because of failure to enroll patients on schedule. Only about one-third of the sites involved in a typical multicenter trial manage to enroll the expected number of patients. As a result, clinical trials are longer and more expensive, and some of them are never completed.

Personalized medicine, in which researchers use biomarkers or other criteria to determine what fraction of patients with a particular disease are eligible for a trial (e.g., cancer patients with an activating mutation in a kinase that is the target of the drug to be tested), makes recruitment harder. That is because researchers must screen large numbers of patients to identify the fraction of patients that would be eligible for the trial. So they need to recruit (and screen) a much larger number of patients than in conventional clinical trials with no patient stratification.

Therefore, researchers, “disease organizations”, and patient advocates are devising new strategies to facilitate recruitment of eligible volunteers. Dr. Ledford cites the example of the Alpha-1 Foundation (Miami, Florida), a “disease organization” that focuses on the familial disease alpha-1 antitrypsin deficiency. (This disease renders patients susceptible to lung and liver diseases.) This foundation has  created a registry of patients with alpha-1 antitrypsin deficiency who are willing to be contacted about and to participate in clinical trials.

There are also cancer registries. Dr. Ledford mentions the Total Cancer Care program run by the Moffitt Cancer Center (Tampa, Florida). This program, which involves 18 hospitals, compiles medical history, tissue samples (stored for future analysis) and genetic information about each patient’s tumor. Patients can consent to doctors contacting them about trials. There are other similar programs being developed in the Netherlands and elsewhere. Dr.Ledford mentions the difficulty in negotiating agreements between institutions, and the need for adequate, ultra-secure networks to support registries that connect multiple hospitals and research centers.

Patient registries that are designed to proactively support recruitment for clinical trials have some resemblance to a “social media” approach to recruitment. However, there is a big difference–the need to secure the privacy of patient records. The current trend in social media (and in some e-commerce platforms) is anti-privacy. This is yet another important reason why a social media or e-commerce approach to clinical trials or other aspects of biotech/pharma R&D is not a suitable model. (To his credit, Dr. Grove mentions the need to maintain patient privacy and confidentiality. But this is not the norm with e-commerce and social media.)

Cutting red tape for faster and cheaper clinical trials

Dr Ledford also mentions ways to deal with more bureaucratic issues that can slow down or block the progress of clinical trials. The NCI is now initiating a data-management system that will standardize data entry across all 2,000 sites that conduct NCI-sponsored trials. This should help reduce costs and cut down on record-keeping errors and omissions.The FDA is also looking into ways to reduce reporting requirements and paperwork. so that investigators can submit summaries of case reports rather than each individual document.

To adapt to the multicenter nature of clinical trials, the US Office for Human Research Protections (Rockville, Maryland), which oversees NIH-funded human studies, has proposed changes to its guidelines that would require designation of a single review board for each project. This may greatly improve the current situation, in which multicenter trials must get approval from each center’s institutional review board. This can take months or even years. Despite the definite advantages of more centralized review, individual research centers may be reluctant to give up their direct oversight of clinical trials.

Something important was not in Dr. Ledford’s article

The space limitations for Dr. Ledford’s “News Feature” article, plus its strict focus on clinical trials per se, did not permit her to include something of crucial importance to reduce clinical attrition. That is utilizing such strategies as biology-driven drug discovery in the research phase of drug development. These strategies are designed to select the best targets and to discover drugs that are more likely to be efficacious in treating a particular group of patients. These research strategies are then coupled with early development strategies that emphasize designing clinical trials aimed at obtaining rapid proof of concept in humans. Such trials typically involve the use (and often the discovery) of biomarkers.

We discussed these issues extensively in our report, Approaches to Reducing Phase II Attrition, as well as in an article published in Genetic Engineering and Biotechnology News (and available on our website) “Overcoming Phase II Attrition Problem“. We also discussed a specific case of the use of this strategy in our October 25, 2010 article on this blog.

Conclusions

Given the low productivity of pharmaceutical R&D, it is tempting to take an envious look at the success of e-commerce and social media, and to attempt to devise strategies that apply methodologies from these industry sectors to the biotech/pharmaceutical industry. We should remember, however, that not so long ago some pharmaceutical executives attempted to apply methodologies from such industries as aerospace, computer hardware, and the auto industry to pharma R&D. Not only did that not work too well for the pharmaceutical industry, but as we all know, the industries that served as a model for these approaches haven’t done very well in recent years either.

In contrast, pharmaceutical and biotechnology companies that have formulated strategies that embrace the uniqueness of biology, such as Novartis and Genentech (the latter now merged with Roche), have done a lot better.

There are other strategies for making clinical trials faster, cheaper, and better that are now under discussion in the biotech/pharma industry and the FDA.  These strategies are based on clinical experience, not e-commerce. We shall discuss them in further blog posts.

__________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to  your company, please click here. We also welcome your comments on this or any other article on this blog.

HDL-raising drugs revisited

 

Niacin (nicotinic acid)

 

In our blog post of May 19, 2011, we discussed the late-stage development of two cholesterol ester transfer protein (CETP) inhibitors, designed to raise serum high-density lipoprotein (HDL), or “good cholesterol”. These agents are Merck’s anacetrapib and Roche’s dalcetrapib. The clinical results with these agents have  have reignited enthusiasm for CETP inhibitors in the medical and drug discovery and development community.

Now comes the news that The National Heart Lung and Blood Institute (NHLBI) of the National Institutes of Health (NIH) stopped a large clinical trial of Abbott’s Niaspan, an extended-release formulation of high-dose niacin, because the drug failed to prevent heart attacks and strokes. High-dose niacin is the only drug that is approved for raising HDL. Generic high-dose niacin is usually taken 2-3 times per day, and can cause adverse effects such as skin flushing and itching. Niaspan, as an extended-release formulation of the drug, is taken once a day, and was developed to reduce the extent of these adverse effects. Niaspan is an FDA-approved drug.

Merck has meanwhile been developing its high-dose non-flushing niacin product, Tredaptive/Cordaptive (extended-release niacin/laropiprant). This is a combination product consisting of extended-release high dose niacin plus  laropiprant. Laropiprant is designed to block the ability of prostaglandin D2 to cause skin flushing; niacin-induced skin flushing works via the action of prostaglandin D2 in the skin. In 2008, the FDA rejected Merck’s New Drug Application for Tredaptive/Cordaptive, so the drug remains investigational in the US. However, in 2009 Merck launched Tredaptive in international markets including Mexico, the UK and Germany. The drug is approved in over 45 countries. Merck is also conducting a 25,000-person trial of Tredaptive for reducing the rate of cardiovascular events in patients who are at risk for cardiovascular disease (CVD). Merck intends to file for approval of the drug in the US in 2012, based on the results of this trial if it is positive.

According to an NIH press release, the NHLBI trial, known as AIM-HIGH, involved combination therapy with Niaspan and a statin (simvastatin). Participants selected for the trial had been taking a statin and had well-controlled LDL, but were still at risk for cardiovascular events since they had a history of CVD, as well as low serum HDL and high serum triglycerides. In the treatment arm of the study, participants received a combination of a stain and Niaspan, while those in the control arm received a statin plus placebo.

During the 32 months of the study, subjects in the treatment arm exhibited increased HDL and lower triglyceride levels, as compared to participants in the control arm.  However, combination Niaspan/statin treatment did not reduce cardiovascular events or strokes as compared to statin treatment plus placebo. The NIH therefore stopped the trial 18 months earlier than planned.

In the AIM-HIGH study, subjects had a lower rate of cardiovascular events and strokes than the trial researchers expected. Of the 1,718 people in the treatment arm, 5.8 people per year had cardiovascular events, as opposed to 5.6 cardiovascular events per year among the 1,696 people in the control arm. There was a small increased rate of strokes in patients taking Niaspan, but researchers cautioned that this may have been due to chance. However, the increased rate of strokes, along with the failure to demonstrate efficacy, contributed to the NHLBI’s decision to end the trial early.

As noted by the AIM-HIGH researchers (and mentioned in the NIH press release), the lack of efficacy of high-dose niacin was unexpected, and in striking contrast to the results of previous trials and of observational studies. For example, a 2010 meta-analysis of clinical trials evaluating niacin, alone or in combination with other lipid-lowering drugs (published between 1966 and mid-2008) found significantly positive effects of niacin in preventing cardiovascular events and in reversing or slowing the progression of atherosclerosis. However, the bulk of the studies analyzed had been performed before statin therapy had become the standard of care. As pointed out in a recent article by clinical outcomes researcher Harlan Krumholz, MD (Yale University School of Medicine), it was important to compare Niasapn with a good treatment–in this case, the standard treatment with a statin–rather than comparing it to a poor treatment or to placebo alone.

The results of the AIM-HIGH study may not apply to other patient populations, including higher-risk groups such as patients with acute heart attack or acute coronary syndromes, or in patients who have poorly-controlled LDL despite statin treatment. As a press release from Abbott pointed out, the relevance of the results of AIM-HIGH to patient populations other than the one studied–patients with stable, non-acute, pre-existing cardiovascular disease and very well controlled LDL on simvastatin–is unknown. However, it is not known whether there are any patient populations that might benefit from treatment with Niaspan plus a statin as compared to a statin alone.

The results of AIM-HIGH also do not apply to other drugs that are designed to raise levels of serum HDL. Each drug must be tested in the clinic before drawing conclusions about its efficacy and safety. Various drugs may have different effects on human disease biology. Thus, for example, one should not use the results of the AIM-HIGH trial of Niaspan to conclude that the CETP inhibitors anacetrapib and dalcetrapib, discussed in our previous blog post, are not likely to be efficacious.

The 19 May issue of Nature contains a special Insight section on cardiovascular biology. An article in this section, by leading cardiovascular researcher Peter Libby (Brigham and Women’s Hospital, Boston MA, where he is the Chief of the Division of Cardiovascular Medicine) and his colleagues, is entitled “Progress and challenges in translating the biology of atherosclerosis”. That article refers to HDL as a “frustrating next frontier” (beyond lowering LDL with statins) in cardiovascular drug treatment. HDL biology is complex, with HDL promoting efflux of cholesterol from macrophages in atherosclerotic plaques and exerting anti-inflammatory and other beneficial effects, as also discussed in our previous blog post. HDL particles in blood serum are heterogeneous, with some HDL particles having a greater degree of positive effects on atherosclerotic plaque biology than others. As a result, treatments (e.g., drugs, diet) that raise HDL, as determined by standard clinical assays for serum HDL, may not necessarily result in clinical benefit, because of qualitative changes in populations of HDL particles.

In this connection, the 2010 study by Alan Tall and his colleagues, which we discussed in our May 19, 2011 blog article, provides hope for the efficacy of anacetrapib. These researchers showed that although niacin treatment in humans resulted in a moderate increase in the ability of HDL to promote net cholesterol efflux (measured in in vitro assays), anacetrapib treatment caused a more dramatic increase. This was due not only to a higher level of HDL in anacetrapib-treated subjects, but also to enhanced ability of anacetrapib-induced HDL particles to promote cholesterol efflux, especially at high HDL concentrations. Although this study suggests that anacetrapib treatment induces increases in HDL particles that promote beneficial effects on atherosclerotic plaque biology, we must wait for the results of the REVEAL trial (expected in 2014-2016) to determine the efficacy of this drug. Meanwhile, the clinical trial of Roche’s CETP inhibitor dalcetrapib, known as dal-OUTCOMES, is ongoing, with efficacy results expected in 2012-2013.

Steven Nissen, M.D. (chief of cardiovascular medicine at Cleveland Clinic), a veteran HDL researcher who has often been critical of the pharmaceutical industry, was recently interviewed on public television about the AIM-HIGH trial. He said that ever since the introduction of statins in 1987, we have not had a successful new drug class that provides significant clinical benefits by modulating serum lipids. Even when new types of lipid-modulating drugs have given apparently better biochemical results (e.g., LDL lowering or HDL raising), they have not provided clinical benefit in terms of preventing cardiovascular events.

Nevertheless, despite past disappointments with HDL-raising therapies, and despite the results of AIM-HIGH, Dr. Nissen persists in running clinical studies of novel HDL-raising drugs. He is now working on testing Resverlogix’ (Calgary Alberta, Canada) RVX-208, a small-molecule drug related to resveratrol that induces endogenous production of the protein component of HDL, apolipoprotein A1. And, as discussed in our last blog post, Dr. Nissen is enthusiastic about the prospects of Merck’s anacetrapib, although he states that the FDA will require hard clinical evidence of this drug’s efficacy before approving it.

Statins, despite their leading role in cardiovascular therapy, only reduce the risk of heart attack and stroke by 25% to 35%. Thus there is the need for new classes of drugs, and HDL is–frustrating though it be–the next frontier. Thus researchers persist in discovery and development of HDL-raising drugs, and there are promising new candidates on the horizon.

__________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to  your company, please click here. We also welcome your comments on this or any other article on this blog.

Can HDL-raising drugs be a big field after all?

 

Atherosclerosis. From Nephron. http://bit.ly/jL6Zos

 

In the April 29, 2011 issue of Cell, there is a Leading Edge review entitled “Macrophages in the Pathogenesis of Atherosclerosis”, by Kathryn J. Moore (New York University Medical Center, New York, NY ) and Ira Tabas (Columbia University, New York, NY). This 15-page  review (including 4 pages of references) covers a big subject–the central role of the macrophage in the pathogenesis of atherosclerosis, and of the resulting acute thrombotic vascular disease, including myocardial infarction, stroke, and sudden cardiac death. The review will be helpful to those who wish to update their knowledge of the mechanistic basis of atherothrombotic disease, or to those who want an introduction to the subject.

Included in the review is a discussion of the role of high-density lipoprotein (HDL), or “good cholesterol” in promoting regression of atherosclerotic plaques. HDL, as well as the protein component of HDL, apolipoprotein A1, are key players in the process of cholesterol efflux, or removal of cholesterol from macrophages in atherosclerotic plaques. HDL may also have other beneficial roles, including prevention of subendothelial apolipoprotein B-lipoprotein (apoB-LP) retention (which starts the atherosclerotic process in the first place), decreasing activation of endothelial cells, and reducing LDL oxidation. (ApoB is the protein component of low-density lipoprotein [LDL], or “bad cholesterol”.) In human populations, low HDL is generally recognized as a major cardiovascular risk factor, and high HDL is recognized as being protective.

In its discussion of therapeutic strategies based on our current picture of the mechanistic basis of atherosclerosis, the authors of the review state that the most effective way to treat the condition would be to decrease subendothelial apoB-LP retention by lowering apoB-LPs in the blood via lifestyle changes and drugs. In order to completely prevent atherosclerosis, serum apoB-LPs (i.e., mainly LDL and VLDL [very low-density lipoprotein]) would need to be lowered below the threshold level required for subendothelial apoB-LP retention in the arteries. However, in Western societies (and in other societies that have been rapidly adopting Western lifestyles), initiation of atherosclerotic lesions occurs in the early teens; thus this preventive approach is not currently feasible.

The leading drugs for lowering serum LDL are the statins, such as atorvastatin (Pfizer’s LIpitor, which is the largest-selling statin; Lipitor will go off-patent in November 2011), pravastatin (Bristol-Myers Squibb’s Pravachol, generics), simvastatin (Merck’s Zocor, generics), and rosuvastatin (AstraZeneca’s Crestor). Statins are generally accepted as being effective in decreasing mortality in patients with cardiovascular disease (CVD). These drugs are also widely prescribed for patients with a high risk of developing CVD; i.e., patients with high LDL, type 2 diabetes, and/or other risk factors. However, some researchers question the value of statins in primary prevention in patients without preexisting CVD but at high risk of developing the disease. For example, a 2010 meta-analysis published in the Archives of Internal Medicine did not find evidence that statin therapy was beneficial in primary prevention of all-cause mortality in patients at high risk of developing CVD. Moreover, although statins are highly effective in decreasing cardiovascular events (up to 60%) and cardiovascular deaths in patients with pre-existing CVD, a large percentage of patients with or at high risk of developing CVD, despite statin treatment, still experience cardiovascular events and cardiovascular death. Therefore, researchers and companies would like to develop other, complementary drugs that work via different mechanisms from the statins.

HDL raising has long been a key target for pharmaceutical and biotechnology companies in their quest to develop CVD drugs that would be complementary to the statins. In the early-to-mid 2000’s, companies had several candidate drugs, of different types, in development. In an article published by Pharmaceutical Executive in 2006, I was quoted as saying that raising HDL was a big field. However, most of the drugs being developed at that time fell by the wayside, mainly due to failure in the clinic.

A particular focus of pharmaceutical companies has been the development of cholesteryl ester transfer protein (CETP) inhibitors. CETP catalyzes the transfer of cholesteryl esters and triglycerides between LDL/VLDL and HDL, and vice versa. In vivo (in animals and in humans), CETP inhibitor drugs raise HDL and lower LDL.

The leading CETP inhibitor in the early to mid-2000s was Pfizer’s torcetrapib. Pfizer had placed high hopes on torcetrapib, as a potential blockbuster to replace anticipated lost revenues from Lipitor when it went off-patent in 2011. However, in late 2006 Pfizer pulled the drug from Phase 3 trials, after finding that combination therapy with torcetrapib  and atorvastatin gave a 50 percent greater mortality rate that atrovastatin alone. This was not only a huge disappointment for Pfizer and its shareholders, but also cast a pall of gloom over the entire HDL-raising drug field, and especially over CETP inhibitors. Researchers speculated that inhibition of CETP might result in producing a form of HDL that is not cardioprotective, and might even be harmful. There were even calls for pushing the HDL field back to the basic research level, with the need to find just how (and what form of) HDL exerted its cardioprotective effects, in people with elevated HDL due to genetics, lifestyle, or treatment with high-dose niacin (the only drug approved to raise HDL).

However, later studies of torceptrapib found that the toxicity of the compound was not due to an untoward effect of CETP inhibition or HDL raising, but was due to off-target effects of the drug. In animals and in humans, torceptrapib raised serum levels of aldosterone, via release of aldosterone from the adrenals. Aldosterone was responsible for the increase of blood pressure seen in animals and in humans treated with torceptrapib, and aldosterone has proatherogenic effects that go beyond its effects on blood pressure. The hypertensive and aldosterone-raising effects of torceptrapib were independent of its CETP inhibitor activity, and other CETP inhibitors (discussed below) do not raise aldosterone levels or blood pressure.

A March 2011 News and Analysis article in Nature Reviews Drug Discovery reviewed the history of the CETP inhibitor field after the demise of torcetrapib. Although the torcetrapib debacle caused several other companies to exit the CETP inhibitor field, Roche and Merck persisted. Roche has been developing the CETP inhibitor  dalcetrapib, and Merck’s CETP inhibitor is known as anacetrapib.

As mentioned in the Nature Reviews Drug Discovery mini-review, Dr. Alan Tall (Columbia University), working in collaboration with Merck researchers, showed in 2010 that niacin treatment in humans resulted in a 30% increase in HDL, while anacetrapib treatment resulted in a 100% increase in HDL. Niacin treatment in humans resulted in a moderate increase in the ability of HDL to promote net cholesterol efflux (measured in in vitro assays) while anacetrapib treatment caused a more dramatic increase. This was due not only to a higher level of HDL in anacetrapib-treated subjects, but also to enhanced ability of anacetrapib-induced HDL particles to promote cholesterol efflux, especially at high HDL concentrations. HDL from both niacin-treated and anacetrapib-treated subjects also exhibited anti-inflammatory activity. This study should help lay to rest the idea that pharmacological inhibition of CETP might result in abnormal pro-atherogenic HDL, as theorized by some researchers after the clinical failure of torceptrapib.

Currently, Roche’s dalcetrapib is in a 15,600-patient Phase 3 clinical trial known as dal-OUTCOMES; this trial was initiated in 2008, and efficacy results are expected in 2012-2013. As of the time of the Nature Reviews Drug Discovery article, Merck planned to initiate its 30,000-patient REVEAL trial of anacetrapib in April 2011. Efficacy results of REVEAL are anticipated in 2014-2016.

In December 2010, the results of Merck’s moderate-sized (1623 patients with or at high risk for CVD, who were already being treated with a statin) Phase 3 DEFINE trial of anacetrapib were published in the New England Journal of Medicine. The DEFINE trial was designed as a safety study. In this 76-week study, anacetrapib showed no significant differences from placebo in terms of safety, as measured by a pre-specified cardiovascular endpoint (defined as cardiovascular death, myocardial infarction, unstable angina or stroke). These cardiovascular events occurred in 16 anacetrapib-treated patients (2.0 percent) compared with 21 placebo-treated patients (2.6 percent). There were also no significant differences in blood pressure, serum electrolytes, or aldosterone levels between anacetrapib-treated and placebo-treated patients.

Anacetrapib treatment also decreased LDL by 40 percent (from 81 to 45 mg/dl vs. 82 to 77 mg/dl for placebo) and increased HDL by 138 percent (from 40 to 101 mg/dl vs. 40 to 46 mg/dl for placebo). Anacetrapib also had other favorable effects on lipid levels (e.g., 36.4% reduction in lipoprotein(a), and 6.8% reduction in triglycerides, beyond the changes seen with placebo treatment).

Although the DEFINE study was too small to provide definitive results regarding the safety of anacetrapib, it gave a 94% predictive probability that treatment with anacetrapib is not associated with the rate of cardiovascular events seen with torcetrapib. The trial also indicated that anacetrapib treatment does not result in the effects (especially raising of serum aldosterone levels) thought to be responsible for torcetrapib’s toxicity. Moreover, anacetrapib treatment resulted in a dramatic increase in HDL levels (beyond that seen with torcetrapib) in the DEFINE study, and the 2010 study by Dr. Tall and his colleagues indicates that anacetrapib-induced HDL is highly effective in promoting cholesterol efflux.

The results with anacetrapib have reignited enthusiasm for CETP inhibitors in the medical community. Even the often-critical Dr. Steven Nissen (Cleveland Clinic) expressed enthusiasm for anacetrapib. However, despite these promising results, the efficacy of CETP inhibitors, in terms of significantly reducing the rate of cardiovascular events, has not yet been demonstrated. Only large, adequately-powered Phase 3 clinical trials, such as dal-OUTCOMES for Roche’s dalcetrapib and REVEAL for Merck’s anacetrapib, can definitively establish both the efficacy and the safety of these drugs.

The development of CETP inhibitors represents a situation in which the leading drug in the class failed because of off-target effects. However, these off-target effects were not class effects, and targeting CETP in order to raise HDL now seems like a good idea after all. Pfizer ignored warning signs (especially the modest elevation in blood pressure induced by torcetrapib, which did not appear to be very significant) in pursuit of its commercial goals, while Roche and especially Merck pursued a more moderate and science-based approach to development of CETP inhibitors. Other companies stopped development of their CETP inhibitors, thus losing their opportunities in this field. Meanwhile, various companies and academic group have been developing other approaches to HDL raising, such as apolipoprotein A1 mimetics, which are in early stages of development.

Despite its early setbacks, HDL-raising drugs may turn out to be a big field after all.

_____________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to  your company, please click here. We also welcome your comments on this or any other article on this blog.