Biopharmconsortium Blog

Expert commentary from Haberman Associates biotechnology and pharmaceutical consulting.

Posts filed under: Haberman Associates

Can adoptive cellular immunotherapy successfully treat metastatic gastrointestinal cancers?

 

Dr. Steven Rosenberg

Dr. Steven Rosenberg

On September 6, 2014, we published an article on this blog announcing the publication of our book-length report, Cancer Immunotherapy: Immune Checkpoint Inhibitors, Cancer Vaccines, and Adoptive T-cell Therapies, by Cambridge Healthtech Institute (CHI).

In that article, we cited the example of the case of a woman with metastatic cholangiocarcinoma (bile-duct cancer), which typically kills the patient in a matter of months. The patient, Melinda Bachini, was treated via adoptive immunotherapy with autologous tumor-infiltrating T cells (TILs) resulting in survival over a period of several years, with a good quality of life.

Our report includes a full discussion of that case, as of the date of the May 2014 publication of a report in Science by Steven A. Rosenberg, M.D., Ph.D. and his colleagues at the National Cancer Institute (NCI). Ms. Bachini’s story was also covered in a May 2014 New York Times article.

Now comes the publication, in Science on December 2015, of an update from the Rosenberg group on their clinical studies of TIL-based immunotherapy of metastatic gastrointestinal cancers. This article discusses the results of TIL treatment of ten patients with a variety of gastrointestinal cancers, including cancers of the bile duct, the colon or rectum, the esophagus, and the pancreas. The case of Ms. Bachini (“patient number 3737”) was included.

Ms. Bachini, a paramedic and a married mother of six children, and a volunteer with the Cholangiocarcinoma Foundation, was 41 years old when first diagnosed with cancer. She remains alive today—a five-year survivor—at age 46.

The Foundation produced a video, dated March 13, 2015, in which Ms. Bachini gives her “patient perspective”. This video includes her story “from the beginning”—from diagnosis through surgery and chemotherapy, and continuing with adoptive immunotherapy at the NCI under Dr. Rosenberg. Although her tumors continue to shrink and she remains alive, she still is considered to have “Stage 4” (metastatic) cancer. Ms. Bachini is a remarkable woman.

The Cholangiocarcinoma Foundation has also produced an on-demand webinar (dated October 21, 2014) on the adoptive cellular therapy trial in patients with various types of metastatic gastrointestinal cancers, led by Drs. Eric Tran and Steven Rosenberg. Ms. Bachini is also a presenter on that webinar. The December 2015 Science article is an updated version of the results of this trial.

The trial, a Phase 2 clinical study (NCT01174121) remains ongoing, and is recruiting new patients.

The particular focus of Dr. Tran’s and Dr. Rosenberg’s study in TIL treatment of gastrointestinal cancers is whether TILs derived from these tumors include T-cell subpopulations that target specific somatic mutations expressed by the cancers, and whether these subpopulations might be harnessed to successfully treat patients with these cancers. Of the ten patients who were the focus of the December 2015 publication, only Ms. Bachini had a successful treatment. In the case of Ms. Bachini, she received a second infusion of TILs that were enriched for CD4+ T cells that targeted a unique mutation in a protein known as ERBB2IP. It was this second treatment that resulted in the successful knockdown of her tumors, which continues to this day.

Despite the lack of similar successes in the treatment of the other nine patients, the researchers found that TILs from eight of these patients contained CD4+ and/or CD8+ T cells that recognized one to three somatic mutations in the patient’s own tumors. Notably, CD8+ TILs isolated from a colon cancer tumor of one patient (patient number 3995) recognized a mutation in KRAS known as KRAS G12D. This mutation results in an amino acid substitution at position 12 in KRAS, from glycine (G) to aspartic acid (D). KRAS G12D is a driver mutation that is involved in causation of many human cancers.

Although two other patients (numbers 4032 and 4069, with colon and pancreatic cancer, respectively) had tumors that expressed KRAS G12D, the researchers did not detect TILs that recognized the KRAS mutation in these patients. The researchers concluded that KRAS G12D was not immunogenic in these patients. The TILs from patient 3995 were CD8+ T cells that recognized KRAS G12D in the context of the human leukocyte antigen (HLA) allele HLA-C*08:02. [As with all T cells, TILs express T-cell receptors (TCRs) that recognize a specific antigenic peptide bound to a particular major histocompatibility complex (MHC) molecule—this is referred to as “MHC restriction”.] The two patients for whom KRAS G12D was not immunogenic did not express the HLA-C*08:02 allele.

The results seen with KRAS G12D-expressing tumor suggest the possibility of constructing genetically-engineered CD8+ T cells that express a TCR that is reactive with the KRAS mutation in the context of the HLA-C*08:02 allele. The KRAS G12D driver mutation is expressed in about 45% of pancreatic adenocarcinomas, 13% of colorectal cancers, and at lower frequencies in other cancers, and the HLA-C*08:02 allele is expressed by approximately 8% and 11% of white and black people, respectively, in the U.S. Thus, in the U.S. alone, thousands of patients per year with metastatic gastrointestinal cancers would potentially be eligible for immunotherapy with this KRASG12D-reactive T cell.

Although only Ms. Bachini (“patient number 3737”) was a long-term survivor, the researchers were able to treat three other patients with enriched populations of TILs targeting predominantly one mutated tumor antigen. Patient 4069 experienced a transient regression of multiple lung metastases of his pancreatic adenocarcinoma, but patients 4007 and 4032 had no objective response. Whereas 23% of circulating T cells at one month after treatment were adoptively transferred mutation-specific TILs in the case of Ms. Bachini, the other three patients treated with enriched populations of mutation-specific TILs showed no or minimal persistence. The researchers concluded that they will need to develop strategies designed to enhance the potency and persistence of adoptively transferred mutation-specific TILs. Nevertheless, the researchers concluded that nearly all patients with advanced gastrointestinal cancers harbor tumor mutation-specific TILs. This finding may serve as the basis for developing personalized adoptive cellular therapies and/or vaccines that can effectively target common epithelial cancers.

Conclusions

Dr. Rosenberg pioneered the study and development of adoptive cellular immunotherapy, beginning in the 1980s. Most studies with TIL-based adoptive immunotherapy have been in advanced melanoma. Adoptive cellular immunotherapy is the most effective approach to inducing complete durable regressions in patients with metastatic melanoma.

As we discussed in our cancer immunotherapy report, melanoma tumors have many more somatic mutations (about 200 nonsynonymous mutations per tumor) than most types of cancer. This appears to be due to the role of a potent immunogen—ultraviolet light—in the pathogenesis of melanoma. The large number of somatic mutations in melanomas results in the infiltration of these tumors by TILs that target the mutations. As discussed in our report, Dr. Rosenberg and his colleagues cultured TIL cell lines that addressed specific immunodominant mutations in patients’ melanomas. Treatment with these cell lines in several cases resulted in durable complete remissions of the patients’ cancers.

Dr. Rosenberg and his colleagues used the same strategy employed in identification of TIL cell lines that targeted specific mutations in melanomas to carry out the study in gastrointestinal cancers, as discussed in our report. However, the small number of somatic mutations and of endogenous TILs in gastrointestinal cancers and in most other epithelial cancers has made studies in these cancers more difficult than studies in melanoma.

in addition, the susceptibility of melanoma to treatment with checkpoint inhibitors such as the PD-1 blockers pembrolizumab (Merck’s Keytruda) and nivolumab (Bristol-Myers Squibb’s Opdivo) correlates with the large number of somatic mutations in this type of cancer. As we discussed in our December 15, 2014 article on this blog, immune checkpoint inhibitors work by reactivating endogenous tumor-infiltrating T cells (TILs). In the case of melanoma, these endogenous TILs target the numerous somatic mutations found in these cancers, and—as suggested by Dr. Rosenberg’s studies with cultured TIL cell lines—those endogenous TILs that target immunodominant mutations can induce durable compete remissions. As discussed in our December 15, 2014 blog article, the three major types of immuno-oncology treatments—immune checkpoint inhibitors, cancer vaccines, and adoptive T-cell therapies, work via related mechanisms.

In 2015, researchers showed that other types of cancers that have numerous somatic mutations are especially susceptible to checkpoint inhibitor treatment. These include, for example, non-small cell lung cancers (NSCLCs) that have mutational signatures that indicate that the cancers were caused by smoking, and cancers that have mutations in genes involved in DNA repair. (Mutations in genes involved in DNA repair pathways result in the generation of numerous additional mutations.)

Moreover, as discussed in our December 15, 2014 blog article, cancer immunotherapy researchers have been expanding the types of tumors that can be treated with checkpoint inhibitors. Genentech/Roche’s PD-L1 inhibitor that was discussed in that article, MPDL3280A, is now called atezolizumab. The clinical trials of atezolizumab discussed in that article and in our report have continued to progress. In a pivotal Phase 2 study in locally advanced or metastatic urothelial bladder cancer (UBC), atezolizumab shrank tumors in 27 percent of people whose disease had medium and high levels of PD-L1 expression and had worsened after initial treatment with platinum chemotherapy. These responses were found to be durable. According to Genentech, these results may represent the first major treatment advance in advanced UBC in nearly 30 years. Atezolizumab also gave positive results in Phase 2 clinical trials in patients with NSCLC that expresses medium to high levels of PD-L1.

Meanwhile, NewLink Genetics (Ames, IA) has entered Phase 3 clinical trials in pancreatic cancer with its HyperAcute cellular immunotherapy vaccine therapy. A Phase 2 trial of the company’s HyperAcute cellular immunotherapy algenpantucel-L in combination with chemotherapy and chemoradiotherapy in resected pancreatic cancer (clinical trial number NCT00569387) appears to be promising.

Dr. Rosenberg’s studies of TIL therapies of gastrointestinal cancers represent another approach to moving immuno-oncology treatments beyond melanoma, based on mutation-specific targeting. The types of cancers that form the focus of these studies—gastrointestinal epithelial cancers—have proven difficult to treat. Moreover, several of them are among the most common of cancers. The researchers and patients involved in these and other immuno-oncology studies are heroes, and oncologists appear to be making measured progress against cancers that have been until recently considered untreatable.

_____________________________________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

“Our Promise to Nicholas”, Batten disease, and gene therapy

 

Wayland MA Source: http://bit.ly/1N1TyRk

Wayland MA Source: http://bit.ly/1N1TyRk

Russell’s Garden Center, on Route 20, a family-owned business established in 1876, is a unique Wayland MA institution. When you shop at Russell’s and approach the check-out counter with your plants, flowers, or other purchases, you will see a donation box for a rare-disease charity called “Our Promise to Nicholas Foundation”.

This charity is named for Nicholas R. Dainiak, a Bedford MA boy who died on his 11th birthday in 2014, after “a courageous six year battle with Batten’s disease”. The primary mission of the foundation is to raise funds and create partnerships aimed at promoting awareness, providing education, and developing translational research in Batten disease.

One of the events that the Foundation sponsors in order to raise funds and awareness is the John Tanner Memorial 5-K Run and Walk, which this year took place on October 4, 2015 in Wayland. This event memorializes both Nicholas and John Tanner. John Tanner was a competitive runner who devoted all of his races over 5 years to raising awareness about Nicholas and Batten disease. He was also a long-time employee of Russell’s Garden Center—hence the Russell’s and Wayland connection to the Foundation. John Tanner died unexpectedly while running the NYC half marathon in the spring of 2013.

Batten disease

Batten disease is a very rare, fatal, autosomal recessive neurodegenerative disorder that usually begins in childhood. Juvenile Batten disease is one of a group of disorders known as neuronal ceroid lipofuscinoses (NCLs). NCLs may be caused by one of over 400 different mutations. They affect the nervous system with vision loss, seizures, movement disorders, slow learning, altered thought processes, and cognitive decline.

Although Batten disease was originally used to describe only the juvenile form of NCL the term “Batten disease” is now widely used to refer to all forms of NCL, including adult-onset disease. Juvenile NCL, the most prevalent form of Batten disease, has been linked to mutations in the CLN3 gene. Late infantile NCL has been linked to mutations in NCL2.

Batten disease is a type of lysosomal storage disease. The CLN3 gene codes for a protein called battenin, which is found principally in lysosomes and in endosomes. The protein’s function is currently unknown. The CLN2 gene codes for a lysosomal enzyme called tripeptidyl peptidase 1 (TPP1), which is an acid protease.

Mutations in CLN2, CLN3, and other Batten disease genes result in the accumulation of lipofuscins in the tissues of the body. Lipofuscins are lipoproteins that form autofluorescent ceroid (i.e., waxy) deposits throughout the body of Batten disease patients.  Lipopfuscin deposits can sometimes be detected visually in the back of the eye. As the disease progresses, the deposits in the retina appear more pronounced, and ophthalmologists see circular bands of different shades of pink and orange in the patient’s optic nerve and retina. Ceroid lipofuscins are a hallmark of Batten disease, and appear to cause disease symptoms.

Juvenile Batten disease has an estimated incidence between 0.5 – 8 per 100,000 live births, with an average of 1.2. Despite its rarity, juvenile Batten disease appears to be the most common form of pediatric neurodegenerative disease. In addition to Batten disease patients, there are approximately 440,000 asymptomatic people in the United States who are carriers of juvenile Batten disease who have one copy of a mutated version of the CLN3 gene.

As with other rare diseases, a typical Batten disease patient may visit 8 physicians and receives 2 to 3 misdiagnoses before being correctly diagnosed. This may take many years. In the case of Nicholas, he had several misdiagnoses and mis-treatments over the early course of his disease, from age 4 to age 5. It was a ophthalmologist who finally correctly diagnosed Nicholas with Batten disease.

Relationship between Batten disease and more common neurodegenerative diseases

The written material next to the donation box for “Our Promise to Nicholas” in Russell’s Garden Center claims that study of Batten disease may lead to a greater understanding of such neurodegenerative diseases of aging as Alzheimer’s and Parkinson’s disease. Some of the symptoms and consequences of Batten disease resemble those of Alzheimer’s and Parkinson’s. Nevertheless, Batten disease is classified as a lysosomal storage disease, while Alzheimer’s and Parkinson’s are thought to be caused via other mechanisms.

However, some researchers see common mechanisms in the pathobiology of neurodegenerative lysosomal storage diseases such as Batten and of other neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Specifically, these include impairment of autophagy and increase in cytoplasmic protein aggregation. For example, some researchers have found relationships between mutations in the Alzheimer’s disease-related protein presenilin 1 and lysosomal dysfunction.

Since clinical trials of drugs for Alzheimer’s disease have so far been unsuccessful, study of alternative mechanisms for the pathogenesis of Alzheimer’s may be useful in developing new ways of addressing drug discovery for this devastating and all-too-common disease.

Discovery and development of gene therapies for Batten disease

The “Our Promise to Nicholas” website has a page entitled “Where your donations go”. According to that Web page, Nicholas’ disease was caused by a splice mutation in CLN2, which blocked production of TPP1. This is the most common mutation in children with the late infantile subtype of Batten Disease.

The same Web page discusses a gene therapy program led by Beverly Davidson, Ph.D. (then at the University of Iowa, Iowa City, IA), which had been supported by Our Promise To Nicholas Foundation. As of April 2014, Dr. Davidson joined the Children’s Hospital of Philadelphia (CHOP). At that time, Dr. Davidson became the director of CHOP’s Center for Cellular and Molecular Therapeutics. She has also continued her research on gene therapy for neurodegenerative diseases, including Batten disease, other neurologic lysosomal storage disorders, Huntington’s and Alzheimer’s diseases, and others.

While at Iowa, and continuing at CHOP, Dr. Davidson and her colleagues were investigating the use of adeno-associated virus (AAV) vectors carrying a functional TPP1 gene in treatment of late infantile Batten disease in animal models.

On November 11, 2015, Spark Therapeutics (Philadelphia, PA) announced that its first gene therapy program targeting a central nervous system (CNS) disease will target late infantile Batten disease. In that press release, it also announced that a report published in the 11 November issue of Science Translational Medicine provides preclinical proof of principle for Spark’s gene therapy, known as SPK-TPP1. The preclinical study, in a naturally occurring dog model, was led by Dr. Davidson at CHOP.

The study demonstrated the potential of a one-time administration of SPK-TPP1 to delay onset and progression of Batten disease in the dog model. SPK-TPP1 consists of Spark’s AAV2 vector carrying a functional TPP1 gene. The preclinical study showed that one-time administration of SPK-TPP1 to the ependymal cells of the brain ventricular system produced steady expression of the enzyme in the cerebrospinal fluid, and throughout the CNS. It also resulted in delayed onset of clinical symptoms and disease progression, protection from cognitive decline and extension of lifespan, as compared to untreated controls.

Based on these results, Spark plans to initiate Investigational New Drug Application (IND)-enabling studies in 2015.

Our November 2015 book-length report, Gene Therapy: Moving Toward Commercialization (published by Cambridge Healthtech Institute), contains a discussion of gene therapy vectors, including AAV. It also highlights Spark Therapeutics as a leader in AAV-based gene therapy and in gene-therapy treatments for retinal diseases. Spark’s technology platform had been developed over a 20-year period at CHOP.

As also discussed in our November 16, 2015 article on this blog, Spark has recently completed a Phase 3 pivotal trial of SPK-RPE65, a gene therapy for treatment of inherited retinal diseases (IRDs) caused by mutations in the gene for RPE65. SPK-TPP1 uses the same AAV2 vector as SPK-RPE65, and will utilize the same manufacturing processes. AAV2 has a neural tropism. Since the retina is an extension of the brain, researchers can utilize AAV2 vectors to target both tissues.

Conclusions

On the Web page “Where your donations go”, Dr. Davidson says that funding from “family foundations such as Our Promise to Nicholas Foundation” has provided much needed support. Their donations have allowed cutting-edge research to be conducted in a timely manner, rather than months or years after researchers develop the ideas for these studies. Moreover, interacting with Batten disease families is especially motivating, and the advisory role of scientists who review grant proposals for family foundations is valuable as well.

Our Promise to Nicholas is far from the only Batten disease “family foundation”. Other families of patients with juvenile and adult-onset Batten disease have formed foundations to fund research and awareness. For example, there are Nathan’s Battle Foundation and the Batten Disease Support and Research Association (BDSRA). Our Promise to Nicholas participated in the 2015 BDSRA Annual Conference, and worked together with other Batten disease family foundations to provide nursing care and childcare for the event. Thus when Dr. Davidson refers to “family foundations”, she is referring to several such organizations.

Dr. Davidson also pointed out that grant funding from the National Institutes of Health (NIH) has dramatically decreased in recent years due to Federal budget constraints. This has especially affected research on rare diseases such as Batten disease. Dr. Davidson believes that “family foundation support is being increasingly relied upon to fill a growing void in NIH funding”.

Funding of Dr. Davidson’s research by Our Promise to Nicholas Foundation and other family foundations has resulted in a gene therapy R&D program that has been adopted by one of the world’s leading gene therapy companies, Spark Therapeutics. Spark (in collaboration with Dr. Davidson’s group at CHOP) is taking its Batten disease program into the clinic, and intends to commercialize SPK-TPP1. Spark is also using its Batten disease program as the basis for its larger neurodegenerative disease program. Thus Our Promise to Nicholas Foundation has much to be proud of.

________________________________________________________________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Gene editing technology used to treat infant with leukemia

 

Baby_Face Source: http://bit.ly/1OjMOyo

Baby_Face Source: http://bit.ly/1OjMOyo

In November 2015, the use of gene editing technology to treat an 11-month-old child with leukemia was reported in news articles in Nature and in Science. Because of the human-interest value of this story, it was also reported in Time magazine and in the New York Times.

Data from this first-in-humans clinical use of the therapy will be presented at the 57th American Society of Hematology (ASH) Annual Meeting in Orlando, FL in early December 2015.

The young patient was treated with a complex cellular immunotherapy regimen developed by Cellectis (Paris, France and New York, NY). Cellectis’ platform involves production of allogeneic (rather than autologous) chimeric antigen receptor (CAR) T-cells to create an “off-the-shelf solution” to cellular immunotherapy for cancer, potentially simplifying manufacturing and standardization of therapies.

We have discussed CAR T-cell therapies on this blog, and—in more detail—in two book-length reports published by Cambridge Healthtech Institute (CHI). These are our 2014 Cancer Immunotherapy report, and our new November 2015 report, Gene Therapy: Moving Toward Commercialization.

CAR T-cell therapies directed against the B-cell antigen CD19, being developed by Novartis/University of Pennsylvania, Juno Therapeutics, and Kite Pharma, have demonstrated impressive clinical results against B-cell leukemias and lymphomas. However, in order to avoid immune incompatibility, CAR T-cell must be constructed and manufactured using autologous T-cells derived from the patient to be treated. This is an expensive and laborious process. Hence the rationale for allogeneic CAR T-cell therapy.

Cellectis uses gene editing in construction of its allogeneic CAR T-cells. Specifically, the company first modifies T-cells from healthy donors with an anti-CD19 CAR gene construct, similar to the methods used by other companies that are developing anti-CD19 CAR cellular immunotherapies. Cellectis then uses gene editing based on transcription activator-like effector nucleases (TALENS) to disrupt expression of the T-cells’ TCR (T-cell receptor) genes. It is the TCRs of the transplanted T cells that recognize the patient’s own cells as foreign, and thus attack them. Cellectis also uses TALENS gene editing to disrupt expression of a gene for another cell-surface protein, CD52. CD52 is present on mature lymphocytes, and is the target of the monoclonal antibody drug alemtuzumab (Genzyme’s Lemtrada). Researchers can then use alemtuzumab to prevent host-mediated rejection of the HLA mismatched CAR19 T cells. Cellectis’ “Talen engineered universal CAR19 T cells” can thus in principle be used to treat any patient with B-ALL (B-cell acute lymphoblastic leukemia), instead of autologous anti-CD19 CAR T-cells.

The treatment of the young patient, Layla Richards of London, was on a compassionate use basis. She had refractory relapsed B-ALL, and was expected to die shortly. Meanwhile, Cellectis had a universal CAR19 (UCART19) cell bank in the same hospital in which Layla was being treated. The cell bank had been characterized in detail, in preparation for submission for regulatory approval and Phase 1 testing.

Prior to administration of the UCART19 cells, the patient received lymphodepleting chemotherapy (including administration of alemtuzumab). After getting the UCART19 cells in June 2015 (near her first birthday), Layla went into remission, and has no trace of leukemia. After about three months she had a bone marrow transplant to help her immune system recover, and is now at home. However the follow-up period since her treatment has only been 5 months. Therefore, Layla’s doctors do not yet know how durable the remission will be. The key question is how long the UCART19 cells can survive in the body and prevent recurrence of leukemia.

Gene editing companies and their technologies discussed in our November 2015 report

Our November 2015 gene therapy report includes a chapter (Chapter 8) that focuses on gene-editing technologies and on companies that are developing therapies based on these technologies. The gene-editing technology that has been getting the most attention from the scientific and financial communities is known as CRISPR/Cas9. The other two technologies discussed in Chapter 8 are TALENS and zinc-finger nucleases (ZFN). The basic principle of these gene-editing technologies is that a “molecular scissors” makes a specific double-strand break in a deleterious DNA sequence. This break is either repaired in such a way as to disrupt the gene by forming deletions or mutations, or—if a suitable donor DNA is provided—the deleterious gene is replaced with a desired, functional gene sequence.

Gene-editing specialty companies discussed in our report based on CRISPR/Cas9 technology include Editas Medicine (Cambridge, MA) (which also utilizes TALENS), Intellia Therapeutics (Cambridge MA), CRISPR Therapeutics (Basel, Switzerland; Stevenage, U.K.; and Cambridge MA), and Caribou Biosciences (Berkeley, CA). Sangamo BioSciences (Richmond, CA), which is also discussed in our report, is a pioneer in ZFN technology.

Despite the predominant focus on CRISPR/Cas9 technology and companies in the biotechnology and venture capital communities, the first clinical studies involving gene editing have used Sangamo’s ZFN technology. These studies are in the field of HIV/AIDS. They involve ex vivo treatment of HIV-infected patients’ T-cells with a specific ZFN-based vector, in order to render the patients resistant to further manifestations of the disease.

Meanwhile, Editas has developed a vector designed to enable the company to move its CRISPR/Cas9 technology into the clinic. Editas’ first clinical program will be a potential treatment for a form of the genetically-driven retinal disease, Leber congenital amaurosis (LCA). (This is a different form of LCA than the one being targeted by Spark Therapeutics, which we discussed in our November 16, 2015 article on this blog).

bluebird bio (Cambridge, MA) is also pursuing a gene-editing technology program based on homing endonucleases and MegaTAL enzymes. This research and preclinical-stage program came to bluebird via its 2014 acquisition of Precision Genome Engineering Inc. (Seattle WA).

Cellectis is not the only company that is combining CAR T-cell therapies with gene-editing technology. In May 2015, Editas formed a collaboration with Juno Therapeutics to pursue research programs that combine Editas’ genome editing technologies with Juno’s CAR and TCR T-cell technologies.

Conclusions

Despite the great deal of excitement about gene-editing technologies and companies (especially CRISPR/Cas9) these are early days for development of therapies based on these technologies. Despite the almost miraculous results in the treatment of Layla Richards, it is only one case, and the follow-up period has been short. Nevertheless, this one case may open the way for this therapy to be used in other “desperate situations” where there is no time, or it is not possible, to use a patient’s own T cells. And researchers are already speculating that a similar technique may be used to treat people with other blood cancers, and eventually people with solid tumors.

For more information on our November 2105 gene therapy report, or to order it, see the CHI Insight Pharma Reports website.

_________________________________________________________________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Gene Therapy Report Published By CHI Insight Pharma Reports

 

Adeno-associated virus, a common gene therapy vector. Source: http://bit.ly/1NR7tf4

Adeno-associated virus, a common gene therapy vector. Source: http://bit.ly/1NR7tf4

On November 6, 2015, Cambridge Healthtech Institute (CHI) announced the publication of a new book-length report, Gene Therapy: Moving Toward Commercialization, by Allan B. Haberman, Ph.D.

As demonstrated by several late-breaking news items that appeared as our report was in the process of publication, gene therapy is a “hot”, fast-moving field. For example:

On October 5, 2015, Spark Therapeutics (Philadelphia, PA) announced positive top-line results from the Phase 3 pivotal trial of SPK-RPE65, a gene therapy for treatment of inherited retinal diseases (IRDs) caused by mutations in the gene for RPE65. This trial met its primary endpoint, and there were no serious adverse events related to treatment with the therapy. In results presented at a scientific meeting later in October, SPK-RPE65 was found to give durable improvements in vision over a three-year period.

SPK-RPE65 is not only Spark’s most advanced gene therapy in development, but is the most advanced gene therapy for retinal disease of any company. It is covered in our report.

bluebird’s LentiGlobin BB305—including the company’s strategy for commercializing this product—is also discussed in our report. In bluebird’s November 5, 2015 presentation at the American Society of Hematology (ASH) Annual Meeting, it was revealed that in Phase 1/2 clinical trials, LentiGlobin BB305 rendered the few sickle-cell disease patients in the trials transfusion-free and hospitalization-free for at least six months. Among patients with severe beta-thalassemia, all except for those with the β0/β0 genotype were rendered transfusion-free for at least 90 days, with a median of 287 days transfusion-free. Two of the β0/β0 patients (who made no hemoglobin at baseline) received a single transfusion post-discharge, and the third β0/β0 patient remains transfusion-dependent.

The stock market had focused on the negative results with the β0/β0 patients, and thus bluebird stock lost over 20% of its value after the ASH abstracts were released. However, the β0/β0 patients represent only one-third of the beta-thalassemia market, and sickle-cell disease is a larger market than beta-thalassemia. Thus, provided further clinical trials are positive, LentiGlobin BB305 can still be a successful product. bluebird is increasing the number of patients who will be enrolled in the trial from eight to 20, so more data should be forthcoming in 2016.

In corporate gene therapy news, Spark Therapeutics recently opened a new satellite office in the Boston area, joining Boston-area gene therapy companies bluebird bio, Dimension Therapeutics, and Voyager Therapeutics. All are discussed in our report. Spark and bluebird are public companies, and Dimension and Voyager recently went public. In addition, uniQure, the company that developed the first approved gene therapy product, opened a Lexington MA office and manufacturing facility in 2013. Boston has thus become Gene Therapy Central. As discussed in our report, Boston is also the most important center for companies that focus on gene editing, based on CRISPR/Cas9 technology.

These and other recent news articles and scientific publications attest to the progress of gene therapy, which only a few years ago was considered to be a “premature technology”.

Our gene therapy report looks at how researchers have been working to overcome critical barriers to development of safe and efficacious gene therapy, from 1990 to 2015. It then focuses on clinical-stage gene therapy programs that are aimed at commercialization, and the companies that are carrying out these programs. A major theme of the report is whether gene therapy can attain near-term commercial success, and what hurdles still need to be overcome.

Topics covered in the report:

  • Development of improved vectors (integrating and non-integrating vectors)
  • Gene therapy for ophthalmological diseases
  • Gene therapy for hemophilias and other rare diseases
  • Gene therapy for more common diseases (e.g., Parkinson’s disease, osteoarthritis, and heart failure)
  • Companies whose central technology platform involves ex vivo gene therapy
  • Gene editing technology
  • Outlook for gene therapy
  • Outlook for eight gene therapy products expected to reach the market before 2020

The report also includes:

  • An exclusive interview with Sam Wadsworth, Ph.D., the Chief Scientific Officer of Dimension Therapeutics and former Head of Gene Therapy R&D at Genzyme
  • The results and an analysis of a survey of individuals working in gene therapy, conducted by Insight Pharma Reports in conjunction with this report.
  • Companies profiled: uniQure, Spark Therapeutics, GenSight, Dimension Therapeutics, Voyager Therapeutics, Oxford BioMedica, bluebird, Juno Therapeutics, Kite Pharma, Editas, and others.

Our report is designed to enable you to understand current and future developments in gene therapy. It is also designed to inform the decisions of leaders in companies and in academic groups that are working in gene therapy R&D and in development of gene therapy enabling technologies.

For more information on the report, or to order it, see the CHI Insight Pharma Reports website.

__________________________________________________________________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Our new website, and continuing R&D on antibody drugs for cancer immunotherapy

OX40 Protein Source: Emw http://bit.ly/1Fww0kP

OX40 Protein Source: Emw http://bit.ly/1Fww0kP

Haberman Associates has a new website, with the same URL as previously but with many improvements. This article is the first Biopharmconsortium Blog post to be posted after the new website has gone online. Please explore the new site, and send any comments on the site to us.

In addition to announcing our new website, this article is designed to outline several new areas of cancer immunotherapy R&D.

Research and development of novel checkpoint inhibitors for cancer immunotherapy

Our September 2014 book-length Insight Pharma Report, “Cancer Immunotherapy: immune checkpoint inhibitors, cancer vaccines, and adoptive T-cell therapies” focused on agents that had reached the clinic. In the case of checkpoint inhibitors, the report did not cover the universe of immune checkpoints, but only those that have been addressed with late-stage agents, some of which had entered—or were about to enter—the market. However, as we stated in the report, researchers expect new experimental products to emerge from immune checkpoint research in the next 5-10 years.

In the report, we mentioned research on agents to target the lymphocyte-activation gene 3 (LAG-3, CD223) pathway. In a published study in mice, Bristol-Myers Squibb (BMS) researchers and their academic collaborators obtained evidence that dual treatment with an anti-PD-1 (such as BMS’ nivolumab) and an anti-LAG-3 monoclonal antibody (MAb) cured most mice of established tumors that were largely resistant to single antibody treatment. They concluded that dual blockade of PD-1 and LAG-3 might constitute a viable strategy for cancer immunotherapy, which might be superior to blocking PD-1 alone.

At the time of our report’s publication, BMS had initiated two Phase 1 safety studies with an investigational anti-LAG-3 MAb. These are a study of anti-LAG-3 with and without anti-PD-1 in treatment of solid tumors (clinical trial number NCT01968109), and a study of anti-LAG-3 in relapsed or refractory chronic lymphocytic leukemia (CLL), Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) (clinical trial number NCT02061761). Both of these studies are still ongoing and recruiting patients.

Another checkpoint inhibitor target that is begin investigated (in preclinical studies) for potential use in cancer immunotherapy is TIM-3 (T-cell immunoglobulin domain and mucin domain 3). TIM-3 is is co-expressed on PD-1+ CD8 T cells in mouse models with solid tumors or hematologic malignancies. In a preclinical mouse melanoma model, combined blockade of TIM-3 and PD-1, or TIM-3 and CTLA4, was more effective in prolonging survival than blocking either protein alone. Moreover, the combination of anti-CTLA4, anti-TIM-3 and anti-LAG-3 produced further suppression of growth of the melanoma tumor. These data suggest that blockade of multiple inhibitory receptors—including TIM-3 and LAG-3—results in synergistic antitumor activity.

Research and development of agonist antibodies for use in cancer immunotherapy

Another approach to antibody-based cancer immunotherapy—in addition to targeting checkpoint inhibitors—is development of agonist antibodies. This is the subject of an upcoming conference in Boston—sponsored by Cambridge Healthtech Institute (CHI), on May 7-8, 2015. This conference is part of CHI’s annual PEGS Boston (Essential Protein Engineering Summit). Agonist antibodies target certain cell surface proteins on T cells, resulting in stimulation of the activity of the T cells. This contrasts with checkpoint inhibitors, which are designed to overcome blockages to T cell activity mediated by immune checkpoints.

Among the targets for agonist antibodies are two members of the tumor necrosis receptor (TNFR) superfamily—CD27 and OX40.

Celldex Therapeutics’ fully-human monoclonal antibody (MAb) agent varlilumab (CDX-1127) targets CD27. As discussed in our cancer immunotherapy report, activation of naïve T-cells requires both T-cell receptor (TCR) signaling and costimulation by a “second signal”. In our report, we used the example of CD28 (present on the surface of T cells) interacting with B7 [present of the surface of an antigen-presenting cell (APC) such as a dendritic cell] to deliver a “second signal”. CD27 is a member of the CD28 superfamily, and it interacts with CD70 to deliver a “second signal”. Varlilumab can substitute for CD70, and deliver a costimulatory signal to T cells whose TCRs are engaged. This can change a weak immune response into a strong, prolonged response. In preclinical models, immunostimuation by varlilumab has been shown to mediate antitumor effects.

In addition to the immunostimulatory activity of varlilumab, this agent may also exert direct therapeutic effects against tumors that express CD27 at high levels, such as human B and T cell lymphomas. Varlilumab has shown potent anti-tumor activity against these lymphomas in preclinical models. In these models, varlilumab may exert its therapeutic activity both via “second-signal” immune activation, and via direct antitumor activity against CD27-bearing lymphoma cells.

Varlilumab is now in ongoing Phase 1 clinical trials against solid and hematological tumors (clinical trial number NCT01460134), and in ongoing Phase 1 and Phase 2 trials in combination with the anti-PD-1 MAb agent nivolumab (BMS’ Opdivo) against advanced refractory solid tumors (clinical trial number NCT02335918). Reports of interim data from clinical trials of varlilumab at scientific meetings in 2013 and in 2014 indicate that this agent was very well tolerated and demonstrated biological activity and signs of clinical activity against advanced, treatment-refractory lymphoid malignancies and metastatic melanoma and renal cell carcinoma.

On March 17, 2015 Celldex announced that it had entered into an agreement with Roche to evaluate the safety, tolerability and preliminary efficacy of varlilumab in combination with Genentech/Roche’s investigational anti-PDL1 agent MPDL3280A in a Phase 1/2 study in renal cell carcinoma. This is based on preclinical studies that suggest that the combination of these two agents may be synergistic, and enhance anti-tumor immune response as compared to either agent alone. In Celldex’s Phase 1 study of varlilumab in multiple solid tumors, promising signs of clinical activity had been seen in patients with refractory renal cell carcinoma. This included a durable partial response (11.0+ months) with decreases in tumor volume over time, and 4 patients with stable disease over periods ranging from 5.3 to 30.7+ months.

Another target for agonist MAbs in immuno-oncology is OX40. MedImmune (the global biologics R&D arm of AstraZeneca) is testing the OX40 agonist MAb MEDI6383 in an ongoing Phase 1 clinical trial (clinical trial number NCT02221960) against recurrent or metastatic solid tumors. MedImmune’s OX40 program is based on technology developed by AgonOx (Portland, OR). The two companies entered into an exclusive global partnership to develop OX40 agonists in 2011.

OX40 is a costimulatory receptor that can potentiate TCR signaling in T cells, leading to the activation of these cells by antigens recognized by their TCRs. Engagement of OX40 by its natural ligands on dendritic cells, or by anti-OX40 antibodies initiates a signal transduction cascade that enhances T cell survival, proliferation, and cytokine production, and can augment immune responses to tumors. Preclinical studies have shown that OX40 agonist antibodies increase antitumor immunity and improve tumor-free survival. A Phase 1 clinical study of an mouse anti-OX40 agonist MAb in patients with advanced cancer was carried out by researchers at the Providence Portland Medical Center in Portland, OR. (AgonOx is a spin-off of the Providence Portland Medical Center.) The study (clinical trial number NCT01644968), whose results were published in 2013, found that treatment with one course of the anti-OX40 MAb induced regression of at least one tumor metastasis in 12 of 30 patients, and exhibited an acceptable toxicity profile. Treatment with the agent also increased the antitumor reactivity of T and B cells in patients with melanoma.

In the upcoming CHI agonist antibody conference, Scott A. Hammond, Ph.D., Principal Scientist, Oncology Research at MedImmune will discuss the preclinical characterization of MedImmune’s OX40 agonists now in clinical trials.

Conclusions

The studies on novel immune checkpoint inhibitors and agonist antibodies illustrate that researchers are continuing to advance the frontiers of immuno-oncology beyond the late-stage MAb agents described in our report. Moreover, many of these studies involve clinical trials of combination therapies of the novel agents with other therapeutics discussed extensively in our report, including the CTLA-4 inhibitor ipilimumab (Medarex/BMS’s Yervoy), the PD-1 inhibitors nivolumab (BMS’ Opdivo) and pembrolizumab (Merck’s Keytruda), and the PD-L1 inhibitor MPDL3280A (Genentech/Roche). This is consistent with the idea that “the future of cancer immunotherapy is combination therapy”. In the survey that Insight Pharma Reports conducted in conjunction with our report, 80% of respondents agreed with this statement.


As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Late-breaking cancer immunotherapy news

Source: Medical Progress Today 12/14/12 http://bit.ly/1sPO1WU

Source: Medical Progress Today 12/14/12
http://bit.ly/1sPO1WU

In our September 16, 2014 article on this blog, we announced the publication by Cambridge Healthtech Institute’s (CHI’s) Insight Pharma Reports of a new book-length report, Cancer Immunotherapy: Immune Checkpoint Inhibitors, Cancer Vaccines, and Adoptive T-cell Therapies, by Allan B. Haberman, Ph.D.

As we said in that blog article, “cancer immunotherapy is a ‘hot’, fast-moving field”. Thus—inevitably—in the short time since the publication of our report, a great deal of late-breaking news has come in.

This article is a discussion of several key late-breaking news items, which were not published in the report.

Pricing of checkpoint inhibitor agents

As discussed in the report, two PD-1 inhibitors have been recently approved. Bristol-Myers Squibb (BMS)/Ono’s nivolumab was approved in Japan (where it is know by the brand name Opdivo) in July 2014 for treatment of unresectable melanoma. Pembrolizumab (Merck’s Keytruda) was approved in the U.S. for treatment of advanced melanoma on September 5, 2014. The very first checkpoint inhibitor to reach the market, the CTLA-4 inhibitor ipilimumab (Medarex/BMS’s Yervoy), was approved in the U.S. in 2011.

At the same time as the news of the approval of the PD-1 inhibitors nivolumab and pembrolizumab came out, information on the pricing of these agents also became available. However, because of the need to complete the report for publication, there was no time to discuss the issue of pricing adequately.

As discussed in a September 4, 2014 article in FiercePharma, the cost of nivolumab in Japan (according to the Wall Street Journal) is $143,000. According to the FierceBiotech article, this was greater than the introductory price for any other cancer drug, especially in Japan, where prices tend to be somewhat lower than in the U.S.

Meanwhile, as reported in a September 4, 2014 article in FierceBiotech, the cost of pembrolizumab in the U.S. will be $12,500 a month, or $150,000 a year.

For comparison, the launch price of BMS’ ipilimumab was $120,000. As we discussed in the report, the PD-1 inhibitors nivolumab and pembrolizumab—as seen in early clinical trials—appear to be more efficacious and have fewer adverse effects in treatment of melanoma.

As discussed in our report, checkpoint inhibitors such as ipilimumab, nivolumab and pembrolizumab are eventually likely to be used in combination with other drugs, including other immuno-oncology drugs, targeted therapies, and others. The price per month or per year of these potentially life-saving and at least in some cases curative combination therapies may thus be expected to go still higher. However, if cancers are pushed into long-term remission or even cure, then it might be possible to discontinue treatment with these expensive drug combinations. In such cases, the cost of treatment may even be less than current therapeutic regimens.

There are no analyses of the costs of specific immunotherapy drugs or cellular therapies in our report. However, we do discuss the issue of drug costs in the survey and interviews that are part of the report.

The issue of the costs of expensive drugs for life-threatening cancers is under discussion in the cancer community. For example, the American Society of Clinical Oncology (ASCO) has initiated an effort to rate oncology drugs not only on their efficacy and adverse effects, but also on their prices. ASCO’s concern is that pricing be related to the therapeutic value of drugs. And commentators such as Peter Bach, MD, MAPP (the Director of the Memorial Sloan Kettering Cancer Center’s Center for Health Policy and Outcomes) have been weighing in with their analyses. As additional immunotherapy drugs and cellular therapies reach the market, these discussions will certainly continue.

The Bristol-Myers Squibb-Merck lawsuit over PD-1 inhibitors

Another late-breaking news item that came out at the time of the publication of our report is the lawsuit between BMS and Merck over PD-1 inhibitors. Specifically, as soon as Merck gained FDA approval for pembrolizumab, BMS and its Japanese partner Ono sued Merck for patent infringement.

The patent in question is U.S. patent number 8,728,474. It was filed on December 2, 2010, granted to Ono on May 20, 2014, and licensed to BMS. The patent covers the use of anti-PD-1 antibodies to treat cancer. According to BMS and Ono’s claims, Merck started developing pembrolizumab after BMS and Ono had already filed their patent and were putting it into practice by developing their own PD-1 inhibitor, nivolumab.

The lawsuit asks for damages, and for a ruling that Merck is infringing the BMS/Ono PD-1 patent. Such a ruling may mean that BMS and Ono are owed royalties on sales of all rival PD-1 drugs, not just Merck’s. BMS/Ono and Merck are involved in parallel litigation in Europe.

Merck acknowledges Ono’s method patent, but says that it is invalid. Merck also said the lawsuit will not interfere with the U.S. launch of pembrolizumab.

We shall have to watch the proceedings in the U.S. District Court for the District of Delaware to see the outcome of this case. Although this lawsuit was not discussed in our report, the report does include a discussion of the fierce race between PD-1 inhibitor developers Merck and BMS to be the first to market, and to gain the largest market share. The lawsuit is clearly one element in this race.

Merck Serono discontinues development of the cancer vaccine tecemotide

On September 18, 2014, Merck KGaA (Darmstadt, Germany; also known as Merck Serono and EMD Serono) announced that it has discontinued development of the cancer vaccine tecemotide. Tecemotide is a peptide vaccine that was formerly known as Stimuvax. It was originally developed by Oncothyreon (Seattle, WA) and licensed to Merck Serono in 2007.

We covered tecemotide in our report, both as an example of a cancer vaccine that had failed in Phase 3 clinical trials, and as an example of a vaccine that was nevertheless still under development. As discussed in our report, in a Phase 3 trial known as START in non-small cell lung cancer (NSCLC) patients, researchers found no significant difference in overall survival between administration of tecemotide or placebo. However, a subsequent analysis suggested that there was a statistically significant survival advantage for tecemotide compared with placebo in a pre-defined subset of patients. Based on these results, Merck Serono began a second Phase 3 trial in that subset.

However, as the result of a failure in a Phase 3 trial in Japan sponsored by Oncothyreon (reported on August 19, 2014), Merck Serono decided to discontinue development.

As stated by Merck Serono’s Executive Vice President and Global Head of R&D Luciano Rossetti, “While the data from the exploratory subgroup analysis in the START trial generated a reasonable hypothesis to warrant additional study, the results of the recent trial in Japanese patients decreased the probability of current studies to reach their goals.”

As we discussed in our report, the cancer vaccine field has been rife with clinical failures—from its beginnings in the 1990s to the present day. This has especially included late-stage failures, not only that of Merck Serono’s tecemotide, but also, for example, GlaxoSmithKline’s (GSKs) MAGE-A3 vaccine. Only one anticancer vaccine—sipuleucel-T (Dendreon’s Provenge) for treatment of metastatic castration-resistant prostate cancer—has ever reached the market, and its therapeutic effects appear to be minimal.

Despite these poor results, researchers and companies persist in their efforts to develop cancer vaccines. Our report discusses why cancer vaccine R&D continues despite the overwhelming history of failure, the hypothesized reasons for these failures, and what researchers and companies can do and are doing to attempt to obtain better results.

Conclusions

As a fast-moving, important field, cancer immunotherapy will continue to generate scientific, medical, and market news. There will continue to be periodic meetings, such as the 2014 European Society for Medical Oncology (EMSO) meeting (September 26-30, Madrid, Spain), in which positive results of small, early-stage trials of several checkpoint inhibitors were presented. Our report—an in-depth discussion of cancer immunotherapy—can enable you to understand such future developments, as well as current ones. It is also designed to inform the decisions of leaders in companies and in academia that are involved in cancer R&D and treatment.

For more information on Cancer Immunotherapy: Immune Checkpoint Inhibitors, Cancer Vaccines, and Adoptive T-cell Therapies, or to order it, see the Insight Pharma Reports website.

_____________________________________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Cancer Immunotherapy Report Published By CHI Insight Pharma Reports

T cells attached to tumor cell. Source: MSKCC. http://bit.ly/1uPr5nl

T cells attached to tumor cell. Source: MSKCC. http://bit.ly/1uPr5nl

 

On September 9, 2014, Cambridge Healthtech Institute’s (CHI’s) Insight Pharma Reports announced the publication of a new book-length report, Cancer Immunotherapy: Immune Checkpoint Inhibitors, Cancer Vaccines, and Adoptive T-cell Therapies, by Allan B. Haberman, Ph.D.

As attested by the torrent of recent news, cancer immunotherapy is a “hot”, fast-moving field. For example:

  • On September 5, 2014, the FDA granted accelerated approval to the PD-1 inhibitor pembrolizumab (Merck’s Keytruda, also known as MK-3475) for treatment of advanced melanoma. This approval was granted nearly two months ahead of the agency’s own deadline. Pembrolizumab is the first PD-1 inhibitor to reach the U.S. market.
  • On May 8, 2014, the New York Times published an article about a woman in her 40’s who was treated with adoptive immunotherapy with autologous T cells to treat her cancer, metastatic cholangiocarcinoma (bile-duct cancer). This deadly cancer typically kills the patient in a matter of months. However, as a result of this treatment, the patient lived for over 2 years, with good quality of life, and is still alive today.

These and other recent news articles and scientific publications attest to the rapid progress of cancer immunotherapy, a field that only a few years ago was considered to be impracticable.

Our report focuses on the three principal types of therapeutics that have become the major focuses of research and development in immuno-oncology in recent years:

  • Checkpoint inhibitors
  • Therapeutic anticancer vaccines
  • Adoptive cellular immunotherapy

The discussions of these three types of therapeutics are coupled with an in-depth introduction and history as well as data for market outlook.

Also featured in this report are exclusive interviews with the following leaders in cancer immunotherapy:

  • Adil Daud, MD, Clinical Professor, Department of Medicine (Hematology/Oncology), University of California at San Francisco (UCSF); Director, Melanoma Clinical Research, UCSF Helen Diller Family Comprehensive Cancer Center.
  • Matthew Lehman, Chief Executive Officer, Prima BioMed (a therapeutic cancer vaccine company with headquarters in Sydney, Australia).
  • Marcela Maus, MD, PhD, Director of Translational Medicine and Early Clinical Development, Translational Research Program, Abramson Cancer Center, University of Pennsylvania in Philadelphia.

The report also includes the results and an analysis of a survey of individuals working in immuno-oncology R&D, conducted by Insight Pharma Reports in conjunction with this report. The survey focuses on market outlook, and portrays industry opinions and perspectives.

Our report is an in-depth discussion of cancer immunotherapy, an important new modality of cancer treatment that may be used to treat as many as 60% of cases of advanced cancer by the late 2010s/early 2020s. It includes updated information from the 2014 ASCO (American Society of Clinical Oncology) and AACR (American Association for Cancer Research) meetings. The report is designed to enable you to understand current and future developments in immuno-oncology. It is also designed to inform the decisions of leaders in companies and in academic groups that are working in areas that relate to cancer R&D and treatment.

For more information on Cancer Immunotherapy: Immune Checkpoint Inhibitors, Cancer Vaccines, and Adoptive T-cell Therapies, or to order it, see the Insight Pharma Reports website.

_____________________________________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Agios Pharmaceuticals continues to progress

Agios Kirykos, Ikaria, Greece. Source: http://commons.wikimedia.org/wiki/File:Agios_Kirikos,_Ikaria.jpg

Agios Kirykos, Ikaria, Greece. Source: http://commons.wikimedia.org/wiki/File:Agios_Kirikos,_Ikaria.jpg

Because of being very busy with other projects, we have not posted an article on this blog since April 10, 2014. However, the Biopharmconsortium Blog is still here. More importantly, Haberman Associates biotech/pharma consulting is still here, and we’re still accepting new clients.

Thanks to the many readers who have continued to follow our website and blog during our blogging hiatus, and who have linked to our blog on Twitter and on other social media.

During the hiatus, several of the companies that we have been following on our blog have been progressing. Over the next several months, we shall be blogging about some of these companies, as well as about other notable industry events that have occurred in recent weeks and that will occur during the remainder of 2014.

The first company that we are writing about is cancer metabolism specialist Agios Pharmaceuticals (Cambridge, MA). Our most recent three articles about Agios on this blog are:

In our September 23, 2013 article, we noted that Agios had initiated its first clinical study—a Phase 1 clinical trial of AG-221 in patients with advanced hematologic malignancies bearing an isocitrate dehydrogenase 2 (IDH2) mutation. AG-221 is a first-in-class, orally available, selective, potent inhibitor of the mutated IDH2 protein. It is thus a targeted (and personalized) therapy for patients with cancers with an IDH2 mutation.

On June 14, 2014, Agios reported on new clinical data in its ongoing Phase 1 trial of AG-221, which was presented at the 19th Congress of the European Hematology Association (EHA) in Milan, Italy by Stéphane de Botton, M.D. (Institut de Cancérologie Gustave Roussy, Villejuif, France).

The presentation reported on the results of AG-221 treatment of 35 patients with IDH2 mutation positive hematologic malignancies. The researchers observed objective responses in 14 out of 25 evaluable patients, and stable disease in an additional 5 patients. Six patients experienced complete remissions which lasted from one to four months, and are still ongoing. AG-221 has shown favorable pharmacokinetics at all doses tested, with large reductions in serum levels of the oncometabolite 2-hydroxyglutarate (2HG). AG-221 was also well tolerated.

The new data confirms and builds upon previously results. The favorable safety and efficacy data supports Agios’ plan to initiate four expansion cohorts in the second half of 2014. Agios also expects to submit additional data from the ongoing Phase 1 trial for presentation at a later scientific meeting in 2014.

Meanwhile, as announced on June 13, 2014, Agios’ partner Celgene exercised its option to an exclusive worldwide license for AG-221. It exercised this option early, based on the Phase 1 data generated so far.

On June 16, 2014, Agios announced that the FDA granted orphan drug designation for AG-221 for treatment of patients with acute myelogenous leukemia (AML). On August 13, 2014, the FDA also granted Fast Track designation to AG-221 for the treatment of patients with AML that carry an IDH2 mutation.

Thus development of Agios’ lead compound, AG-221, continues to progress. Several other Agios R&D programs are also progressing, as detailed in the company’s report for the second quarter of 2014.

_____________________________________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Forma Therapeutics’ expanded R&D collaboration with Celgene

 

Ubiquitin pathway. Source: Rogerdodd, English language Wikipedia

Ubiquitin pathway. Source: Rogerdodd, English language Wikipedia

On April 1, 2014, Forma Therapeutics (Watertown MA) announced that it had entered into an expanded strategic collaboration with Celgene (Summit, NJ).

Under the new agreement, Forma has received an upfront cash payment of $225 million. The initial collaboration between the two companies under the new agreement will be for 3 1⁄2 years. Celgene will also have the option to enter into up to two additional collaborations with terms of two years each for additional payments totaling approximately $375 million. Depending on the success of the collaborations and if Celgene elects to enter all three collaborations, the combined duration of the three collaborations may be at least 7 1⁄2 years.

Under the terms of the new agreement, Forma will control projects from the research stage through Phase 1 clinical trials. For programs selected for licensing, Celgene will take over clinical development from Phase 2 to commercialization. Forma will retain U.S. rights to these products, and Celgene will have the rights to the products outside of the U.S. For products not licensed to Celgene, FORMA will maintain worldwide rights.

During the term of the third collaboration, Celgene will have the exclusive option to acquire Forma, including the U.S. rights to all licensed programs, and worldwide rights to other wholly owned programs within Forma at that time.

The April 2013 agreement between Forma and Celgene

The new collaboration between Forma and Celgene builds on an earlier agreement between the two companies. On April 29, 2013, the two companies entered into a collaboration aimed at discovery, development, and commercialization of drug candidates to modulate targets involved in protein homeostasis.

Protein homeostasis, also known as proteostasis, involves a tightly regulated network of pathways controlling the biogenesis, folding, transport and degradation of proteins. The ubiquitin pathway (illustrated in the figure above) is one of these pathways. We recently discussed how the ubiquitin pathway is involved in the mechanism of action of thalidomide and lenalidomide (Celgene’s Thalomid and Revlimid).

Targeting protein homeostasis has application to discovery and development of drugs for oncology, neurodegenerative disease, and other disorders. However, the April 2013 Forma/Celgene agreement focused on cancer. Under that agreement, Forma received an undisclosed upfront payment. Upon licensing of preclinical drug candidates by Celgene, Forma was to be eligible to receive up to $200 million in research and early development payments. FORMA was also to be eligible to receive $315 million in potential payments based upon development, regulatory and sales objectives for the first ex-U.S. license, as well as  up to a maximum of $430 million per program for further licensed products, in addition to post-sales royalties.

On October 8, 2013, Forma announced that it had successfully met the undisclosed first objective under its April 2013 strategic collaboration agreement with Celgene. This triggered an undisclosed payment to Forma. Progress in the April 2013 collaboration was an important basis for Celgene’s decision to enter into a new, broader collaboration with Forma a year later.

The scope of the new April 2014 Forma/Celgene collaboration

Unlike the April 2013 agreement, the April 2014 agreement between Forma and Celgene is not limited to protein homeostasis, or to oncology. The goal of the new collaboration is to “comprehensively evaluate emerging target families for which Forma’s platform has exceptional strength” over “broad areas of chemistry and biology”.  The expanded collaboration will thus involve discovery and development of compounds to address a broad range of target families and of therapeutic areas.

According to Celgene’s Thomas Daniel, M.D. (President, Global Research and Early Development), Celgene’s motivation for signing the new agreement is based not only on the early success of the existing Forma/Celgene collaboration, but also on “emerging evidence of the power of Forma’s platform to generate unique chemical matter across important emerging target families”.

According to Forma’s President and CEO, Steven Tregay, Ph.D., the new collaboration with Cegene enables Forma to maintain its autonomy in defining its research strategy and conducting discovery through early clinical development. It also aligns Forma with Celgene’s key strengths in hematology and in inflammatory diseases.

Forma Therapeutics in Haberman Associates publications

We have been following Forma on the the Biopharmconsortium Blog since July 2011. At that time, I was a speaker at Hanson Wade’s World Drug Targets Summit (Cambridge, MA). At that meeting, Mark Tebbe, Ph.D. (then Vice President, Medicinal and Computational Chemistry at Forma) was also a speaker. At the conference, Dr. Tebbe discussed FORMA’s technology platforms, which are designed to be enabling technologies for discovery of small-molecule drugs to address challenging targets such as protein-protein interactions (PPIs).

In particular, Dr. Tebbe discussed Forma’s Computational Solvent Mapping (CS-Mapping) platform, which enables company researchers to interrogate PPIs in intracellular environments, to define hot spots on the protein surfaces that might constitute targets for small-molecule drugs. FORMA has been combining CS-Mapping technology with its chemistry technologies (e.g., structure guided drug discovery, diversity orientated synthesis) for use in drug discovery.

We also discussed Forma’s earlier fundraising successes as of January 2012, and cited Forma as a “built to last” research-stage platform company in an interview for Chemical & Engineering News (C&EN).

Finally, we discussed Forma and its technology platform in our book-length report, Advances in the Discovery of Protein-Protein Interaction Modulators, published by Informa’s Scrip Insights in 2012. (See also our April 25, 2012 blog article.)

In our report, we discussed Forma as a company that employs “second-generation technologies” for the discovery of small-molecule PPI modulators. This refers to a suite of technologies designed to overcome the hurdles that stand in the way of the accelerated and systematic discovery and development of PPI modulators. Such technologies are necessary to make targeting of PPIs a viable field.

Forma’s website now has a brief explanation of its drug discovery engine, as it is applied to targeting PPIs. This includes links to web pages describing:

Our 2012 book-length report discusses technologies of these types, as applied to discovery of PPI modulators, in greater detail than the Forma website.

According to Dr. Daniel: “Progress in our existing [protein homeostasis] collaboration, coupled with emerging evidence of the power of FORMA’s platform to generate unique chemical matter across important emerging target families” led Celgene to enter into its new, expanded collaboration with Forma in April 2014. This suggests that Celgene is especially impressed by Forma’s chemistry and chemical biology platforms. it also suggests that chemistry technology platforms developed to address PPIs may be applicable to areas of drug discovery beyond PPIs as well.

Concluding remarks

Despite the enthusiasm for Forma and its drug discovery engine shown by Celgene, Forma’s other partners, and various industry experts, it must be remembered that Forma is still a research-stage company. The company has not one lone drug candidate in the clinic, let alone achieving proof-of-concept in humans. It is clinical proof-of-concept, followed by Phase 3 success and approval and marketing of the resulting drugs, that is the “proof of the pudding” of a company’s drug discovery and development efforts.

We await the achievement of such clinical milestones by Forma Therapeutics.

From a business strategy point of view, we have discussed Forma’s efforts to build a stand-alone, independent company for the long term in this blog and elsewhere. Now Forma has entered into an agreement with Celgene that might—in around 7-10 years—result in Forma’s acquisition. This would seem to contradict Forma’s “built to last” strategy.

However, in the business environment that has prevailed over the past several years, several established independent biotech companies, notably Genentech and Genzyme, have been acquired by larger companies. Even several Big Pharmas (e.g., Schering-Plough and Wyeth) have been acquired.

Nevertheless, we do not know what the business environment in the biotech/pharma industry will be like in 7-10 years, despite the efforts of strategists to predict it. And Celgene might forgo its option to acquire Forma, for any number of reasons. So the outlook for Forma’s status as an independent or an acquired company (which also depends on its success in developing drugs) is uncertain.

__________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to  your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

RNAi therapeutics stage a comeback

Transthyretin protein structure

Transthyretin protein structure

Not so long ago, the once-promising field of RNA interference (RNAi)-based drugs was on the downswing. This was documented in our August 22, 2011 article on this blog, entitled “The Big Pharma Retreat From RNAi Therapeutics Continues”. That article discussed the retreat from RNAi drugs by such Big Pharma companies as Merck, Roche, and Pfizer. In our March 30, 2012 blog article, we also mentioned leading RNAi company Alnylam’s (Cambridge, MA) January 20, 2012 downsizing. This restructuring was made necessary by Alnylam’s inability to continue capturing major Big Phama licensing and R&D deals, as it had once done.

As we discussed in our August 22, 2011 article, the therapeutic RNAi (and microRNA) field represented an early-stage area of science and technology, which may well be technologically premature. This level of scientific prematurity was comparable to that of the monoclonal antibody (MAb) drug field in the 1980s. Big Pharmas did not have the patience to continue with the RNAi drug programs that they started.

In that article, we cited an editorial by oligonucleotide therapeutics leader Arthur Krieg, M.D. This editorial discussed the issues of therapeutic RNAi’s scientific prematurity, but predicted a rapid upswing of the field once the main bottleneck–oligonucleotide drug delivery–had been validated.

The January 2014 Alnylam-Genzyme/Sanofi deal

Now–as of January 2014–there is much evidence that the therapeutic RNAi field is indeed coming back. This is especially true for Alnylam. On January 13, 2014, it was announced that Genzyme (since 2011 the rare disease unit of Sanofi) invested $700 million in Alnylam’s stock. Alnylam called this deal “transformational” for both Alnylam and the RNAi therapeutics field.

Genzyme had previously been a partner in developing Alnylam’s lead product patisiran (ALN-TTR02) for the treatment of transthyretin-mediated amyloidosis (ATTR). [ATTR is a rare inherited, debilitating, and often fatal disease caused by mutations in the transthyretin (TTR) gene.] Under the new agreement, Genzyme will gain marketing rights to patisiran everywhere except North America and Western Europe upon its successful completion of clinical trials and approval by regulatory agencies. Genzyme will also codevelop ALN-TTRsc, a subcutaneously-delivered formulation of patisiran. Intravenously-delivered patisiran is now in Phase 3 trials for a form of ATTR known as familial amyloidotic polyneuropathy (FAP), and ALN-TTRsc is in Phase 2 trials for a form of ATTR known as familial amyloidotic cardiomyopathy (FAC).

The Alnylam/Genzyme deal will also cover any drugs in Alnylam’s pipeline that achieve proof-of-concept before the end of 2019. Genzyme will have the option to development and commercialize these drugs outside of North America and Western Europe.

On the same day as the announcement of the new Alnylam/Genzyme deal, Alnylam acquired Merck’s RNAi program, which consists of what is left of the former  Sirna Therapeutics, for an upfront payment of $175 million in cash and stock. (This compares to the $1.1 billion that Merck paid for Sirna in 2006.) Alnylam will receive Merck’s RNAi intellectual property, certain preclinical drug candidates, and rights to Sirna/Merck’s RNAi delivery platform. Depending on the progress of any of Sirna/Merck’s products in development, Alnylam may also pay Merck up to $105 million in milestone payments per product.

Alnylam’s Phase 1 clinical studies with its ALN-TTR RNAi drugs

In August 2013, Alnylam and its collaborators published the results of their Phase 1 clinical trials of ALN-TTR01 and ALN-TTR02 (patisiran) in the New England Journal of Medicine. At the same time, Alnylam published a press release on this paper.

ALN-TTR01 and ALN-TTR02 contain exactly the same oligonucleotide molecule, which is designed to inhibit expression of the gene for TTR via RNA interference. They differ in that ALN-TTR01 is encapsulated in the first-generation version of liponanoparticle (LNP) carriers, and ALN-TTR02 is encapsulated in second-generation LNP carriers. Both types of LNP carriers are based on technology that is owned by Tekmira Pharmaceuticals (Vancouver, British Columbia, Canada) and licensed to Alnylam.

Tekmira’s LNP technology was formerly known as stable nucleic acid-lipid particle (SNALP) technology. Alnylam and Tekmira have had a longstanding history of collaboration involving SNALP/LNP technology, as described in our 2010 book-length report, RNAi Therapeutics: Second-Generation Candidates Build Momentum, published by Cambridge Healthtech Institute. Although the ownership of the intellectual property relating to SNALP/LNP technology had been the subject of litigation between the two companies, these disputes were settled in an agreement dated November 12, 2012. On December 16, 2013, Alnylam made a milestone payment of $5 million to Tekmira upon initiation of Phase 3 clinical trials of patisiran.

LNP-encapsulated oligonucleotides accumulate in the liver, which is the site of expression, synthesis, and secretion of TTR. As we discussed both in our book-length RNAi report, and in an article on this blog, delivery of oligonucleotide drugs (including “naked” oligonucleotides and LNP-encapsulated ones) to the liver is easier than targeting most other internal organs and tissues. The is a major reason for the emphasis on liver-targeting drugs by Alnylam and other therapeutic oligonucleotide companies.

To summarize the published report, each of the two formulations was studied in a single-dose, placebo-controlled Phase 1 trial. Both formulations showed rapid, dose-dependent, and durable RNAi-mediated reduction in blood TTR levels. (Both mutant and wild-type TTR production was suppressed by these drugs.)

ALN-TTR02 was much more potent than ALN-TTR01. Specifically, ALN-TTR01 at a dose of 1.0 milligram per kilogram, gave a mean reduction in TTR at day 7 of 38%, as compared with placebo. ALN-TTR02 gave mean reductions at doses from 0.15 to 0.3 milligrams per kilogram ranging from 82.3% to 86.8% at 7 days, with reductions of 56.6 to 67.1% at 28 days. The main adverse effects seen in the study were mild-to-moderate acute infusion reactions. These were observed in 20.8% of subjects receiving ALN-TTR01 and in 7.7% (one patient) of subjects receiving ALN-TTR02. These adverse effects could be managed by slowing the infusion rate. There were no significant increases in liver function test parameters in these studies.

The results of these studies have established proof-of-concept in humans that Alnylam’s TTR RNAi therapies can successfully target messenger RNA (mRNA) transcribed from the disease-causing gene for TTR. Alnylam also said in its press release that these results constitute “the most robust proof of concept for RNAi therapy in man to date”, and that they demonstrate proof-of-concept not only for RNAi therapeutics that target TTR, but also for therapeutic RNAi targeting of liver-expressed genes in general. They also note that this represents the first time that clinical results with an RNAi therapeutic have been published in the New England Journal of Medicine.

Other recent RNAi therapeutics deals, and the resurgence of the therapeutic RNAi field

The January 2014 Alnylam/Genzyme/Sanofi agreement is not the only therapeutic RNAi deal that has been making the news in 2013 and 2014. On July 31, 2013, Dicerna Pharmaceuticals (Watertown, MA) secured $60 million in an oversubscribed Series C venture financing. These monies will be used to conduct Phase 1 clinical trials of Dicerna’s experimental RNAi therapies for hepatocellular carcinoma and for unspecified genetically-defined targets in the liver. So far, Dicerna has raised a total of $110 million in venture capital.

Dicerna’s RNAi therapeutics are based on its proprietary Dicer substrate siRNA technology, and its EnCore lipid nanoparticle delivery vehicles.

On January 9, 2014, Santaris Pharma A/S (Hørsholm, Denmark) announced that it had signed a worldwide strategic alliance with Roche to discover and develop novel RNA-targeted medicines in several disease areas, using Santaris’ proprietary Locked Nucleic Acid (LNA) technology platform. Santaris will receive an upfront cash payment of $10 million, and a potential $138M in milestone payments. On January 10, 2014, Santaris announced another agreement to develop RNA-targeted medicines, this time with GlaxoSmithKline. Financial details of the agreement were not disclosed.

As in the case of Alnylam, we discussed Dicerna’s and Santaris’ technology platforms in our 2010 book-length report, RNAi Therapeutics: Second-Generation Candidates Build Momentum.

A January 15, 2014 FierceBiotech article reported that RNAi therapeutic deals were a hot topic at the 2014 J.P. Morgan Healthcare Conference in San Francisco, CA. This is a sign of the comeback of the therapeutic RNAi field, and of the return of interest by Big Pharma and by venture capitalists in RNAi drug development.

__________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to  your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.