Loading...
Biotechnology, Pharmaceutical, Life Science Consulting2018-06-11T18:12:01+00:00

Consulting for Effective Life Science R&D and Partnering

HABERMAN ASSOCIATES is a Boston-based consulting firm, founded in 1993, that specializes in science and technology strategy for biotechnology, pharmaceutical, and other life science companies.  We consult, write, and speak on critical issues that determine the success of life science companies. Working together with our partners in the Biopharmaceutical Consortium and other independent consultants, we help your company increase the effectiveness of its drug and diagnostic discovery and development, commercialization of new research products, assessment of new business opportunities, and partnering.

.

Our services are designed to help you:

  • discover and develop new drugs, diagnostics, and research products
  • improve your drug pipelines
  • identify and evaluate potential partners
  • develop new applications for your technologies
  • penetrate new markets

Our clients range from industry start-ups to major corporations:

  • pharmaceutical companies
  • biotechnology companies
  • diagnostics companies
  • research products companies

Our typical consulting engagements have included:

  • Strategic new product and R&D planning
  • Opportunity assessment and assistance in partnering
  • Technology assessment
  • Assessment of pipeline drugs and assistance in go/no go decisions
  • Proprietary strategic reports on areas for potential business expansion
  • Due diligence on potential partners and investment or acquisition candidates
Consulting Engagements Examples
Request Confidential Consultation
pharmaceutical scientist working with test tubes and chemicals
See All Blog Posts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 846 other subscribers

The Consortium combines the advantages of large and small consulting firms.
Clients benefit from the Consortium’s expansive depth and breadth of experience without the training
and overhead burdens associated with large, relatively junior staffs.

Meet the Consortium Team Members

Featured Publications

Haberman Associates’ book-length reports have been published by leading organizations such as Decision Resources, Cambridge Healthtech Institute, and Informa Healthcare.  Our articles have appeared in leading publications such as Genetic Engineering & Biotechnology News, Pharma DD, and PharmaWeek and provide in-depth research and analysis in several key areas of the biotech and pharmaceutical industries.  Both our reports and articles are designed to help you understand and maximize opportunities in the ever-changing science, technology, market, and strategic issues that affect the life science industry.

See Reports and Articles Currently Available
biotechnology protein molecules
Download This FREE Report

FREE REPORT by Allan B. Haberman, Ph.D. on key strategies, biological targets, technologies, successes, and remaining challenges. Copyright/published by SCRIP Insights.
Learn More

Haberman Associates Social Media

 

Featured Blog Post

Nobel Prize in Medicine for discovery of cancer immunotherapy via checkpoint inhibition

Checkpoint inhibitor therapies (NIH)

On October 1, 2018, the The Nobel Assembly at the Karolinska Institute announced that it had awarded the 2018 Nobel Prize in Physiology or Medicine jointly to James P. Allison and Tasuku Honjo for their discovery of cancer immunotherapy via immune checkpoint inhibition.

As is usual, these Nobel Prize awards were made decades after the original discoveries. This is despite the growing importance of immunotherapy in cancer treatment, including the prospect for long-term survival of an increasing number of patients.

As we discussed in our January 9, 2014 article on this blog, the development of checkpoint inhibitors was made possible by a line of academic research on T cells that was begun in the 1980s by James P Allison, Ph.D., one of the 2018 Nobel laureates. Dr. Allison’s research focused on targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) on activated T cells in tumors.

Even after Dr. Allison’s research demonstrated in 1996 that an antibody that targeted CTLA-4 had anti-tumor activity in mice, no pharmaceutical company would agree to work on this system. However, the monoclonal antibody (mAb) specialist company Medarex licensed the antibody in 1999. Bristol-Myers Squibb (BMS) acquired Medarex in 2009, and the anti-CTLA-4 mAb ipilimumab (BMS’ Yervoy) was approved in 2011 for treatment of metastatic melanoma. It was the first checkpoint inhibitor to be approved by the FDA.

Meanwhile, Dr. Honjo discovered the T-cell protein PD-1 in 1992. PD-1 (programmed cell death protein 1) acts as a brake on the immune system via a different mechanism. PD-1 became a target for other checkpoint inhibitors, notably nivolumab (BMS’ Opdivo—originally developed by Medarex and Ono Pharmaceutical) and pembrolizumab (Merck’s Keytruda). The FDA approved nivolumab for treatment of metastatic melanoma in 2014, and it approved pembrolizumab for the same indication, also in 2014.

Since 2014, clinical studies—and regulatory approvals—of checkpoint inhibitor therapies have been expanded to other types of cancer (e.g., lung and renal cancers, lymphomas). They now also include mAb agents that target yet another checkpoint protein, PD-L1. (programmed death-ligand 1).  Moreover, clinical studies of combination therapies of inhibitors of both PD-1 and CTLA-4 in patients with metastatic melanoma showed that the combination therapy is more effective than treatment with either agent alone.

Clinical studies on immune checkpoint therapy have since developed rapidly. Researchers have applied this type of therapy to a wide range of types of cancer, and have also developed additional checkpoint inhibitor drugs. A major reason for the intense interest in checkpoint inhibitor therapy is the potential of these drugs to produce long-term survival. However, only a minority of patients show such dramatic responses. Researchers have therefore been attempting to develop biomarkers and diagnostic tests to identify factors that promote long-term survival in patients. They have also been working to develop potentially more-effective therapies by combining checkpoint inhibitors with other agents. Such attempts to build on prior achievements in immuno-oncology to improve outcomes for more patients are often referred to as “immuno-oncology 2.0.” Agents that are intended to improve the results of treatment with agents like checkpoint inhibitors may also be referred to as “second-wave” or “third-wave” immuno-oncology agents.

Our 2017 report, Cancer Immunotherapy: Building on Initial Successes to Improve Clinical Outcomes  (published by Insight Pharma Reports) focuses on immuno-oncology 2.0 strategies. This report, as well as several articles on this blog, provide updated discussions of approved and clinical stage agents in immuno-oncology (including checkpoint inhibitors and “second-wave” agents). These materials also discuss other classes of cancer immunotherapy agents, such as cancer vaccines and cellular immunotherapies.

Other early immuno-oncology researchers who did not receive the Nobel

As pointed out in the October 1 Nature News article about the Nobel Prize, there were other researchers who made seminal early discoveries in immuno-oncology who were not included in the Nobel Prize. (This usually happens.)

Gordon Freeman, an immunologist at the Dana-Farber Cancer Institute (Boston, MA), was named in the Nature News article as one of these researchers. Dr. Freeman, along with immunologists Arlene Sharpe (Harvard Medical School, Boston MA) and Lieping Chen (Yale University, New Haven, CT), studied checkpoint proteins, especially a protein that binds to PD-1 known as PD-L1. PD-L1 is the target for the approved checkpoint inhibitor mAb agents atezolizumab (Roche/ Genentech’s Tecentriq) and avelumab (Merck/Serono-Pfizer’s Bavencio). Although the CTLA-4 inhibitor ipilimumab was the first checkpoint inhibitor to be approved, it has so far been shown to work only in melanoma. However, PD-1 and PD-L1 inhibitors have been approved for the treatment of 13 different types of cancer so far. According to Dr. Freeman, his discoveries and those of his collaborators “were foundational” in the development of PD-1 and PD-L1 inhibitors.

Nevertheless, Dr. Freeman also said that Dr. Allison’s work with CTLA-4 was foundational for the development of the field of immuno-oncology, beginning when most researchers and pharmaceutical companies considered it to be scientifically premature. “Jim Allison has been a real advocate and champion of the idea of immunotherapy,” he said. “And CTLA-4 was a first success.”

All in all, Dr. Freeman says that it has been exciting to watch the immuno-oncology field develop. Not only has this development involved “an incredible amount of human creativity and energy,” but many cancer patients are doing better as the result of the entry of immuno-oncology drugs into the oncologist’s armamentarium.

Also as usual, Drs. Allison and Honjo received other prestigious awards prior to receiving the Nobel. In 2015, Dr. Allison received a Lasker prize for his work in cancer immunotherapy. (Lasker awards are commonly called the “American Nobels”). Dr. Honjo won the Kyoto Prize in basic sciences in 2016. This is a global prize awarded by the Inamori Foundation.

____________________________________________________________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Follow Us On Twitter