On March 5, 2010, Cambridge Healthtech Institute (CHI) announced the publication of our new book-length report, Animal Models for Therapeutic Strategies. This new Insight Pharma Report discusses the use of animal models to develop new paradigms for drug discovery and development in important human diseases. The report also discusses strategies for developing more predictive animal models of drug efficacy. Poorly predictive animal models are a major reason for Phase II and Phase III pipeline drug attrition. Thus this new report complements our May 2009 Insight Pharma Report, Approaches to Reducing Phase II Attrition.

We have an article, published in Genetic Engineering News in 2004, on the use of animal models in developing novel therapeutic strategies for the treatment of Alzheimer’s disease (AD), available free on our website. This article, based on our 2004 animal models report that is now out of print, gives examples of the use of animal models (the mouse, C. elegans, Drosophila, and the zebrafish) in developing therapeutic strategies. These animal model studies were key to the eventual development of nearly all the pipeline drugs now in the clinic for AD, as well as the development of alternative hypotheses to the dominant amyloid hypothesis (and therapeutic strategies based on them).

The 2010 report includes discussions of using animal models to develop therapeutic strategies for such diseases as Parkinson’s disease, polycystic kidney disease (PKD), autism, and various types of cancer. It also includes discussion of development of emerging animal models, from fish to frogs to mammals.

In the “emerging mammalian model systems” chapter, we include a discussion of the “reemergence” of the laboratory rat, an old animal model that had been eclipsed by the mouse in the era of knockout mice and genomics. Many of you have no doubt seen the ads from SAGE Labs (Sigma Advanced Genetic Engineering) in scientific and trade journals, announcing that “knockout rats are finally here”. Some of you may also have seen the Nature news article Return of the rat. We cover the technologies behind the reemergence of the rat, and the companies and research groups that are driving this development, in our report. As we also discuss in the report, some of the new technologies used in developing rat models are also being applied to other mammalian species.

The report also covers the issue of why it is so difficult to model the complex diseases that are the major focus of current drug discovery and development efforts in the pharmaceutical/biotechnology industry, and strategies that researchers are using to develop more predictive animal models, especially more predictive mammalian models.

For more information on the report, or to order it, see the CHI Insight Pharma Reports website.

There have been a lot of new papers on stem cells in leading journals recently. Stem cells made the covers of the 26 June issue of Science and the 2 July issue of Nature, and both issues contained special sections on stem cells.

Note especially the review by Shinya Yamanaka of progress in the field of induced pluripotent stem cells (iPS), a field that was first developed by his laboratory.

In that article, Dr. Yamanaka discusses hurdles to efficient iPS cell generation, ways by which these hurdles may be overcome, and the great potential of the field once this is accomplished. This is an example of the need to develop enabling technologies to move a technologically immature field up the development curve, as discussed in our earlier post.

Both the Science and Nature issues also discuss regeneration in such animals as planarians, fish, and salamanders. This is a favorite subject of many biologists. The Science article considers the implications of molecular and cellular studies of regeneration in these organisms for wound repair in humans.

The July/August issue of Technology Review also has an article on stem cells, which emphasizes iPS technology.

The article also discusses companies that are attempting to commercialize the infant field of iPS technology, especially California start-up iZumi Bio, which since publication of the article has merged with Pierian to form iPierian. iPierian is focusing on using iPS cells for drug discovery, by creating disease models based on iPS cells derived from patients with such diseases as Parkinson’s disease, spinal muscular atrophy and amyotrophic lateral sclerosis.