OX40 Protein Source: Emw http://bit.ly/1Fww0kP

OX40 Protein Source: Emw http://bit.ly/1Fww0kP

Haberman Associates has a new website, with the same URL as previously but with many improvements. This article is the first Biopharmconsortium Blog post to be posted after the new website has gone online. Please explore the new site, and send any comments on the site to us.

In addition to announcing our new website, this article is designed to outline several new areas of cancer immunotherapy R&D.

Research and development of novel checkpoint inhibitors for cancer immunotherapy

Our September 2014 book-length Insight Pharma Report, “Cancer Immunotherapy: immune checkpoint inhibitors, cancer vaccines, and adoptive T-cell therapies” focused on agents that had reached the clinic. In the case of checkpoint inhibitors, the report did not cover the universe of immune checkpoints, but only those that have been addressed with late-stage agents, some of which had entered—or were about to enter—the market. However, as we stated in the report, researchers expect new experimental products to emerge from immune checkpoint research in the next 5-10 years.

In the report, we mentioned research on agents to target the lymphocyte-activation gene 3 (LAG-3, CD223) pathway. In a published study in mice, Bristol-Myers Squibb (BMS) researchers and their academic collaborators obtained evidence that dual treatment with an anti-PD-1 (such as BMS’ nivolumab) and an anti-LAG-3 monoclonal antibody (MAb) cured most mice of established tumors that were largely resistant to single antibody treatment. They concluded that dual blockade of PD-1 and LAG-3 might constitute a viable strategy for cancer immunotherapy, which might be superior to blocking PD-1 alone.

At the time of our report’s publication, BMS had initiated two Phase 1 safety studies with an investigational anti-LAG-3 MAb. These are a study of anti-LAG-3 with and without anti-PD-1 in treatment of solid tumors (clinical trial number NCT01968109), and a study of anti-LAG-3 in relapsed or refractory chronic lymphocytic leukemia (CLL), Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) (clinical trial number NCT02061761). Both of these studies are still ongoing and recruiting patients.

Another checkpoint inhibitor target that is begin investigated (in preclinical studies) for potential use in cancer immunotherapy is TIM-3 (T-cell immunoglobulin domain and mucin domain 3). TIM-3 is is co-expressed on PD-1+ CD8 T cells in mouse models with solid tumors or hematologic malignancies. In a preclinical mouse melanoma model, combined blockade of TIM-3 and PD-1, or TIM-3 and CTLA4, was more effective in prolonging survival than blocking either protein alone. Moreover, the combination of anti-CTLA4, anti-TIM-3 and anti-LAG-3 produced further suppression of growth of the melanoma tumor. These data suggest that blockade of multiple inhibitory receptors—including TIM-3 and LAG-3—results in synergistic antitumor activity.

Research and development of agonist antibodies for use in cancer immunotherapy

Another approach to antibody-based cancer immunotherapy—in addition to targeting checkpoint inhibitors—is development of agonist antibodies. This is the subject of an upcoming conference in Boston—sponsored by Cambridge Healthtech Institute (CHI), on May 7-8, 2015. This conference is part of CHI’s annual PEGS Boston (Essential Protein Engineering Summit). Agonist antibodies target certain cell surface proteins on T cells, resulting in stimulation of the activity of the T cells. This contrasts with checkpoint inhibitors, which are designed to overcome blockages to T cell activity mediated by immune checkpoints.

Among the targets for agonist antibodies are two members of the tumor necrosis receptor (TNFR) superfamily—CD27 and OX40.

Celldex Therapeutics’ fully-human monoclonal antibody (MAb) agent varlilumab (CDX-1127) targets CD27. As discussed in our cancer immunotherapy report, activation of naïve T-cells requires both T-cell receptor (TCR) signaling and costimulation by a “second signal”. In our report, we used the example of CD28 (present on the surface of T cells) interacting with B7 [present of the surface of an antigen-presenting cell (APC) such as a dendritic cell] to deliver a “second signal”. CD27 is a member of the CD28 superfamily, and it interacts with CD70 to deliver a “second signal”. Varlilumab can substitute for CD70, and deliver a costimulatory signal to T cells whose TCRs are engaged. This can change a weak immune response into a strong, prolonged response. In preclinical models, immunostimuation by varlilumab has been shown to mediate antitumor effects.

In addition to the immunostimulatory activity of varlilumab, this agent may also exert direct therapeutic effects against tumors that express CD27 at high levels, such as human B and T cell lymphomas. Varlilumab has shown potent anti-tumor activity against these lymphomas in preclinical models. In these models, varlilumab may exert its therapeutic activity both via “second-signal” immune activation, and via direct antitumor activity against CD27-bearing lymphoma cells.

Varlilumab is now in ongoing Phase 1 clinical trials against solid and hematological tumors (clinical trial number NCT01460134), and in ongoing Phase 1 and Phase 2 trials in combination with the anti-PD-1 MAb agent nivolumab (BMS’ Opdivo) against advanced refractory solid tumors (clinical trial number NCT02335918). Reports of interim data from clinical trials of varlilumab at scientific meetings in 2013 and in 2014 indicate that this agent was very well tolerated and demonstrated biological activity and signs of clinical activity against advanced, treatment-refractory lymphoid malignancies and metastatic melanoma and renal cell carcinoma.

On March 17, 2015 Celldex announced that it had entered into an agreement with Roche to evaluate the safety, tolerability and preliminary efficacy of varlilumab in combination with Genentech/Roche’s investigational anti-PDL1 agent MPDL3280A in a Phase 1/2 study in renal cell carcinoma. This is based on preclinical studies that suggest that the combination of these two agents may be synergistic, and enhance anti-tumor immune response as compared to either agent alone. In Celldex’s Phase 1 study of varlilumab in multiple solid tumors, promising signs of clinical activity had been seen in patients with refractory renal cell carcinoma. This included a durable partial response (11.0+ months) with decreases in tumor volume over time, and 4 patients with stable disease over periods ranging from 5.3 to 30.7+ months.

Another target for agonist MAbs in immuno-oncology is OX40. MedImmune (the global biologics R&D arm of AstraZeneca) is testing the OX40 agonist MAb MEDI6383 in an ongoing Phase 1 clinical trial (clinical trial number NCT02221960) against recurrent or metastatic solid tumors. MedImmune’s OX40 program is based on technology developed by AgonOx (Portland, OR). The two companies entered into an exclusive global partnership to develop OX40 agonists in 2011.

OX40 is a costimulatory receptor that can potentiate TCR signaling in T cells, leading to the activation of these cells by antigens recognized by their TCRs. Engagement of OX40 by its natural ligands on dendritic cells, or by anti-OX40 antibodies initiates a signal transduction cascade that enhances T cell survival, proliferation, and cytokine production, and can augment immune responses to tumors. Preclinical studies have shown that OX40 agonist antibodies increase antitumor immunity and improve tumor-free survival. A Phase 1 clinical study of an mouse anti-OX40 agonist MAb in patients with advanced cancer was carried out by researchers at the Providence Portland Medical Center in Portland, OR. (AgonOx is a spin-off of the Providence Portland Medical Center.) The study (clinical trial number NCT01644968), whose results were published in 2013, found that treatment with one course of the anti-OX40 MAb induced regression of at least one tumor metastasis in 12 of 30 patients, and exhibited an acceptable toxicity profile. Treatment with the agent also increased the antitumor reactivity of T and B cells in patients with melanoma.

In the upcoming CHI agonist antibody conference, Scott A. Hammond, Ph.D., Principal Scientist, Oncology Research at MedImmune will discuss the preclinical characterization of MedImmune’s OX40 agonists now in clinical trials.

Conclusions

The studies on novel immune checkpoint inhibitors and agonist antibodies illustrate that researchers are continuing to advance the frontiers of immuno-oncology beyond the late-stage MAb agents described in our report. Moreover, many of these studies involve clinical trials of combination therapies of the novel agents with other therapeutics discussed extensively in our report, including the CTLA-4 inhibitor ipilimumab (Medarex/BMS’s Yervoy), the PD-1 inhibitors nivolumab (BMS’ Opdivo) and pembrolizumab (Merck’s Keytruda), and the PD-L1 inhibitor MPDL3280A (Genentech/Roche). This is consistent with the idea that “the future of cancer immunotherapy is combination therapy”. In the survey that Insight Pharma Reports conducted in conjunction with our report, 80% of respondents agreed with this statement.


As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Agios Kirykos, Ikaria, Greece. Source: http://commons.wikimedia.org/wiki/File:Agios_Kirikos,_Ikaria.jpg

Agios Kirykos, Ikaria, Greece. Source: http://commons.wikimedia.org/wiki/File:Agios_Kirikos,_Ikaria.jpg

Because of being very busy with other projects, we have not posted an article on this blog since April 10, 2014. However, the Biopharmconsortium Blog is still here. More importantly, Haberman Associates biotech/pharma consulting is still here, and we’re still accepting new clients.

Thanks to the many readers who have continued to follow our website and blog during our blogging hiatus, and who have linked to our blog on Twitter and on other social media.

During the hiatus, several of the companies that we have been following on our blog have been progressing. Over the next several months, we shall be blogging about some of these companies, as well as about other notable industry events that have occurred in recent weeks and that will occur during the remainder of 2014.

The first company that we are writing about is cancer metabolism specialist Agios Pharmaceuticals (Cambridge, MA). Our most recent three articles about Agios on this blog are:

In our September 23, 2013 article, we noted that Agios had initiated its first clinical study—a Phase 1 clinical trial of AG-221 in patients with advanced hematologic malignancies bearing an isocitrate dehydrogenase 2 (IDH2) mutation. AG-221 is a first-in-class, orally available, selective, potent inhibitor of the mutated IDH2 protein. It is thus a targeted (and personalized) therapy for patients with cancers with an IDH2 mutation.

On June 14, 2014, Agios reported on new clinical data in its ongoing Phase 1 trial of AG-221, which was presented at the 19th Congress of the European Hematology Association (EHA) in Milan, Italy by Stéphane de Botton, M.D. (Institut de Cancérologie Gustave Roussy, Villejuif, France).

The presentation reported on the results of AG-221 treatment of 35 patients with IDH2 mutation positive hematologic malignancies. The researchers observed objective responses in 14 out of 25 evaluable patients, and stable disease in an additional 5 patients. Six patients experienced complete remissions which lasted from one to four months, and are still ongoing. AG-221 has shown favorable pharmacokinetics at all doses tested, with large reductions in serum levels of the oncometabolite 2-hydroxyglutarate (2HG). AG-221 was also well tolerated.

The new data confirms and builds upon previously results. The favorable safety and efficacy data supports Agios’ plan to initiate four expansion cohorts in the second half of 2014. Agios also expects to submit additional data from the ongoing Phase 1 trial for presentation at a later scientific meeting in 2014.

Meanwhile, as announced on June 13, 2014, Agios’ partner Celgene exercised its option to an exclusive worldwide license for AG-221. It exercised this option early, based on the Phase 1 data generated so far.

On June 16, 2014, Agios announced that the FDA granted orphan drug designation for AG-221 for treatment of patients with acute myelogenous leukemia (AML). On August 13, 2014, the FDA also granted Fast Track designation to AG-221 for the treatment of patients with AML that carry an IDH2 mutation.

Thus development of Agios’ lead compound, AG-221, continues to progress. Several other Agios R&D programs are also progressing, as detailed in the company’s report for the second quarter of 2014.

_____________________________________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Happy New Year! Source: Roblespepe. http://bit.ly/1cpkyHX

Happy New Year! Source: Roblespepe. http://bit.ly/1cpkyHX

As it does every year, Science published its “Breakthrough of the Year” for 2013 in the 20 December 2013 issue of the journal.

Science chose cancer immunotherapy as its Breakthrough of the Year 2013.

In its 20 December 2013 issue, Science published an editorial by its Editor-in-Chief, Marcia McNutt, Ph.D., entitled “Cancer Immunotherapy”. The same issue has a news article  by staff writer Jennifer Couzin-Frankel, also entitled “Cancer Immunotherapy”.

As usual, the 20 December 2013 issue of Science contains a Breakthrough of the Year 2013 news section, which in addition to the Breakthrough of the Year itself, also contains articles about several interesting runners-up, ranging from genetic microsurgery using CRISPR (clustered regularly interspaced short palindromic repeat) technology to mini-organs to human cloning to vaccine design.

In the Science editorial and news article, the authors focus on the development and initial successes of two types of immunotherapy:

  • Monoclonal antibody (MAb) drugs that target T-cell regulatory molecules, including the approved CTLA4-targeting MAb ipilimumab (Bristol-Myers Squibb’s Yervoy), and the clinical-stage anti-PD-1 agents nivolumab (Bristol-Myers Squibb) and lambrolizumab (Merck).
  • Therapy with genetically engineered autologous T cells, known as chimeric antigen receptor (CAR) therapy, such as that being developed by a collaboration between the University of Pennsylvania and Novartis.

The rationale for Science’s selection of cancer immunotherapy as the breakthrough of the year is that after a decades-long process of basic biological research on T cells, immunotherapy products have emerged and–as of this year–have achieved impressive results in clinical trials. And–as pointed out by Dr. McNutt–immunotherapy would constitute a new, fourth modality for cancer treatment, together with the traditional surgery, radiation, and chemotherapy.

However, as pointed out by Dr. McNutt and Ms. Couzin-Frankel, these are still early days for cancer immunotherapy. Key needs include the discovery of biomarkers that can help predict who can benefit from a particular immunotherapy, development of combination therapies that are more potent than single-agent therapies, and that might help more patients, and means for mitigating adverse effects.

Moreover, it will take some time to determine how durable any remissions are, especially whether anti-PD1 agents give durable long-term survival. Finally, although several MAb-based immunotherapies are either approved (in the case of  ipilimumab) or well along in clinical trials, CAR T-cell therapies and other adoptive immunotherapies remain experimental.

In addition to the special Science “Breakthrough 2013” section, Nature published a Supplement on cancer immunotherapy in its 19/26 December 2013 issue. This further highlights the growing importance of this field.

Cancer immunotherapy on the Biopharmconsortium Blog

Readers of our Biopharmconsortium Blog are no strangers to recent breakthroughs in cancer immunotherapy. In the case of MAb-based immunotherapies, we have published two summary articles, one in 2012 and the other in 2013. These articles noted that cancer immunotherapy was the “star” of the American Society of Clinical Oncology (ASCO) annual meeting in both years.

Our blog also contains articles about CAR therapy, as being developed by the University of Pennsylvania and Novartis and by bluebird bio and Celgene. Moreover, the Biopharmconsortium Blog contains articles on other types of cancer immunotherapies not covered by the Science articles, such as cancer vaccines.

We look forward to further progress in the field of cancer immunotherapy, and to the improved treatments and even cures of cancer patients that may be made possible by these developments.
__________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to  your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Eastern Bluebird

Eastern Bluebird

The Biopharmconsortium Blog includes several articles that are–in whole or in part–about adoptive T-cell immunotherapy [or adoptive cell transfer (ACT)] for cancer. In particular, we have produced two blog articles that discuss the Novartis/University of Pennsylvania (Penn) collaboration, which is aimed at finally commercializing adoptive immunotherapy for cancer.

The Novartis/Penn collaboration focuses on a particular technology for ACT, known as chimeric antigen receptor (CAR) technology. In this technology, autologous T cells isolated from patient blood are engineered with retroviral vectors carrying a gene for a tumor antigen-specific CAR. The CAR enables the engineered cells to recognize specific surface proteins on tumor cells, and to go on to kill the cells.

Now we find out that at least one more company–one a lot closer to home (at least for us folks in Greater Boston)–is involved in a collaboration to develop and commercialize CAR technology for ACT. This company is bluebird bio (Cambridge, MA). As of June 24, 2012, bluebird successfully completed its initial public offering.

On March 21, 2013, bluebird announced in a press release that it had entered into a multi-year strategic collaboration with Celgene (Summit, NJ) to discover new disease-modifying gene therapies for cancer. The collaboration is to focus on applying bluebird’s gene therapy technology to the design and development of CAR T cells.

According to the news release, the bluebird/Celgene collaboration may lead to the development and commercialization of multiple CAR T-cell products. Celgene has an option to license products that result from the collaboration after the completion of a Phase 1 clinical trial for each product. bluebird bio will be responsible for R&D through Phase 1 clinical trials, and Celgene will be responsible for clinical studies beyond Phase 1 for any product that it licenses, as well as commercialization of any such product.

As also announced in the March 21, 2013 press release, Celgene has entered into a separate strategic collaboration that focuses on CAR T-cell technology with the Center for Cell and Gene Therapy at Baylor College of Medicine, Texas Children’s Hospital and The Methodist Hospital (Houston, TX). The work on CAR T-cell technology in Houston is led by Malcolm Brenner, M.D., Ph.D. (Director, Center for Cell and Gene Therapy Baylor College of Medicine). Dr. Brenner and his colleagues, for example, showed that T cells expressing a CAR specific for the GD2 tumor antigen on neuroblastoma cells produced tumor responses in over half of 19 neuroblastoma patients with refractory or active disease. Three of 11 patients with active disease achieved complete remission.

According to the March 21, 2013 news release, bluebird bio, Celgene and Dr. Brenner’s team will work collaboratively to advance and develop existing and new CAR T-cell products and programs.

Our October 2012 discussion of bluebird bio and adoptive cell transfer in the Biopharmconsortium Blog

On  October 11, 2012, we published an article on this blog entitled “Is Gene Therapy Emerging From Technological Prematurity?” This article included a section on bluebird bio, which represented the very first time we mentioned bluebird on this blog.

In this section–over 5 months before bluebird announced its agreement with Celgene–we discussed the relationship between bluebird’s technology and ACT:

bluebird bio’s platform..represents both a gene therapy technology and an adoptive cellular transfer (ACT) technology. We have discussed ACT technologies (in this case, for immunotherapy for cancer) in a previous article on this blog.  Since some of these technologies involve genetically-engineered autologous T cells, they may also be thought of as representing both ACT and a kind of gene therapy.

We are happy to learn that bluebird also realized (independent from us) the potential utility of their “gene therapy” technology for adoptive immunotherapy/ACT for cancer. We are also happy that bluebird entered into an agreement with Celgene to develop and commercialize such therapies, with the potential to give at least some cancer patients the durable complete responses that they yearn for.

________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or an initial one-to-one consultation on an issue that is key to your company’s success, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Logo for Haberman Associates

Haberman Associates now has a new website, which is available at https://biopharmconsortium.com. Our new site has an attractive, up-to-date look and feel, and also contains updated news and other updated content.

We have also fully integrated our Biopharmconsortium Blog into our new site. Our blog resides at https://biopharmconsortium.com/blog. There has been a hiatus in posting on our blog recently, due to finishing construction of our new site. Thus the last article on our blog before completion of the website was posted on April 5, 2013. However, we posted a new article on May 29, 2013, and intend to publish blog articles on a more regular basis.

The integration of the Biopharmconsortium Blog into our website emphasizes that it is the blog for our consulting group, not an independent entity or a  journalistic blog. Despite the diversity of subjects covered by the blog, the focus is on effective drug discovery and development, and on company strategies designed to facilitate effective new product development.

For more information on our consulting group, Haberman Associates, see our brief December 16, 2012 blog article, entitled What Is Haberman Associates? Better yet, you may explore our website for a more complete picture of our consulting group.

We hope that the diverse community of our readers will benefit from the discussions on our blog. We also hope that those of you in life science companies will get a feeling for how we approach issues in drug discovery and development and company strategies.

However, even the best articles or books on how to solve key industry problems will not solve these problems on their own. Companies need to develop company-specific solutions and to implement them. Haberman Associates consulting may enable your company to formulate and implement the solutions you need to improve your productivity.

If you are in  a life sciences firm, and have questions about Haberman Associates, or wish to send us a consulting inquiry or to commission us to write a report for publication, please telephone or e-mail us.