17 December 2015

Spark Therapeutics’ retinal disease gene therapy SPK-RPE65 may reach the U.S. market in 2017

By |2018-12-28T23:23:23+00:00December 17, 2015|Drug Development, Eye Diseases, Gene Therapy, Rare Diseases|

Spark! Source: http://bit.ly/1Obw4Nk

Spark! Source: http://bit.ly/1Obw4Nk

As we discussed in our November 16, 2015 article on this blog, Spark Therapeutics (Philadelphia, PA) recently announced positive top-line results from the Phase 3 pivotal trial of SPK-RPE65, a gene therapy for treatment of inherited retinal diseases (IRDs) caused by mutations in the gene for RPE65.  At a later scientific meeting, the company presented data that showed that SPK-RPE65 gave durable improvements in vision over a three-year period.

SPK-RPE65 is the most advanced gene therapy in development for retinal disease of any company, as discussed in our November 2015 book-length gene therapy report, Gene Therapy: Moving Toward Commercialization, published by Cambridge Healthtech Institute. Our report includes detailed discussions of SPK-RPE65, Spark Therapeutics, and other companies developing gene therapies for ophthalmologic diseases.

Now comes a recent online article in “Seeking Alpha” by ONeil Trader, which discusses Spark’s commercialization plans for SPK-RPE65, based on the positive Phase 3 results. Spark is planning to file a Biologics License Application (BLA) for SPK-RPE65 in 2016, as also stated on the company’s website. According to the “Seeking Alpha” article, SPK-RPE65 should reach the U.S. market in 2017, and should be the first FDA-approved gene therapy product in the United States.

The “Seeking Alpha” article also gives a projected range of peak sales for SPK-RPE65: from $350 million to $900 million. The article also reminds investors (the primary audience of “Seeking Alpha”) that Spark has a rich pipeline beyond SPK-RPE65. We have discussed the two clinical stage products mentioned by “Seeking Alpha”—SPK-CHM for the IRD choroideremia and SPK-FIX for hemophilia B (partnered with Pfizer) in our report. We have also discussed Spark’s first neurodegenerative disease gene therapy, SPK-TPP1 for Batten disease, in the December 7, 2015 article on this blog.

Might other gene therapies reach the U.S. market in 2017?

The “Seeking Alpha” article predicts that SPK-RPE65 will be the first gene therapy to reach the US. market, in 2017. However, there are several other gene therapies discussed in our report that might also reach the U.S. market by 2017, perhaps beating SPK-RPE65 for the honor of being first-to-U.S.-market.

Despite its already being approved in Europe, uniQure’s Glybera, the “first commercially available gene therapy”, will not be the first to reach the U.S. market. That is because uniQure has dropped plans to seek FDA approval for Glybera.

As discussed in our gene therapy report, the products most likely to reach the U.S. market at the same time or before SPK-RPE65 are all CD19-targeting CAR T-cell therapies for treatment of various B-cell leukemias and lymphomas. These products include Novartis/Penn’s CTL019, Juno’s JCAR015, and Kite’s KTE-C19. At least as a “stretch goal”, CTL019 might even reach the U.S. market for treatment of acute lymphoblastic leukemia (ALL) in 2016. In addition to these products, our report includes discussions of other gene therapies that might reach the U.S. and/or European market before 2020, and achieve revenues equal to or greater than those projected for SPK-RPE65.

Importantly, none of these other products will compete with SPK-RPE65, except for the honor of being “the first gene therapy to reach the U.S. market”. And the prospect of several gene therapy products reaching the U.S. and/or European market before 2020 suggests that gene therapy is moving beyond the “premature technology” stage, and into commercial success.

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

7 December 2015

“Our Promise to Nicholas”, Batten disease, and gene therapy

By |2018-12-24T22:23:30+00:00December 7, 2015|Drug Development, Drug Discovery, Gene Therapy, Haberman Associates, Immunology, Personalized Medicine|

Wayland MA Source: http://bit.ly/1N1TyRk

Wayland MA Source: http://bit.ly/1N1TyRk

Russell’s Garden Center, on Route 20, a family-owned business established in 1876, is a unique Wayland MA institution. When you shop at Russell’s and approach the check-out counter with your plants, flowers, or other purchases, you will see a donation box for a rare-disease charity called “Our Promise to Nicholas Foundation”.

This charity is named for Nicholas R. Dainiak, a Bedford MA boy who died on his 11th birthday in 2014, after “a courageous six year battle with Batten’s disease”. The primary mission of the foundation is to raise funds and create partnerships aimed at promoting awareness, providing education, and developing translational research in Batten disease.

One of the events that the Foundation sponsors in order to raise funds and awareness is the John Tanner Memorial 5-K Run and Walk, which this year took place on October 4, 2015 in Wayland. This event memorializes both Nicholas and John Tanner. John Tanner was a competitive runner who devoted all of his races over 5 years to raising awareness about Nicholas and Batten disease. He was also a long-time employee of Russell’s Garden Center—hence the Russell’s and Wayland connection to the Foundation. John Tanner died unexpectedly while running the NYC half marathon in the spring of 2013.

Batten disease

Batten disease is a very rare, fatal, autosomal recessive neurodegenerative disorder that usually begins in childhood. Juvenile Batten disease is one of a group of disorders known as neuronal ceroid lipofuscinoses (NCLs). NCLs may be caused by one of over 400 different mutations. They affect the nervous system with vision loss, seizures, movement disorders, slow learning, altered thought processes, and cognitive decline.

Although Batten disease was originally used to describe only the juvenile form of NCL the term “Batten disease” is now widely used to refer to all forms of NCL, including adult-onset disease. Juvenile NCL, the most prevalent form of Batten disease, has been linked to mutations in the CLN3 gene. Late infantile NCL has been linked to mutations in NCL2.

Batten disease is a type of lysosomal storage disease. The CLN3 gene codes for a protein called battenin, which is found principally in lysosomes and in endosomes. The protein’s function is currently unknown. The CLN2 gene codes for a lysosomal enzyme called tripeptidyl peptidase 1 (TPP1), which is an acid protease.

Mutations in CLN2, CLN3, and other Batten disease genes result in the accumulation of lipofuscins in the tissues of the body. Lipofuscins are lipoproteins that form autofluorescent ceroid (i.e., waxy) deposits throughout the body of Batten disease patients.  Lipopfuscin deposits can sometimes be detected visually in the back of the eye. As the disease progresses, the deposits in the retina appear more pronounced, and ophthalmologists see circular bands of different shades of pink and orange in the patient’s optic nerve and retina. Ceroid lipofuscins are a hallmark of Batten disease, and appear to cause disease symptoms.

Juvenile Batten disease has an estimated incidence between 0.5 – 8 per 100,000 live births, with an average of 1.2. Despite its rarity, juvenile Batten disease appears to be the most common form of pediatric neurodegenerative disease. In addition to Batten disease patients, there are approximately 440,000 asymptomatic people in the United States who are carriers of juvenile Batten disease who have one copy of a mutated version of the CLN3 gene.

As with other rare diseases, a typical Batten disease patient may visit 8 physicians and receives 2 to 3 misdiagnoses before being correctly diagnosed. This may take many years. In the case of Nicholas, he had several misdiagnoses and mis-treatments over the early course of his disease, from age 4 to age 5. It was a ophthalmologist who finally correctly diagnosed Nicholas with Batten disease.

Relationship between Batten disease and more common neurodegenerative diseases

The written material next to the donation box for “Our Promise to Nicholas” in Russell’s Garden Center claims that study of Batten disease may lead to a greater understanding of such neurodegenerative diseases of aging as Alzheimer’s and Parkinson’s disease. Some of the symptoms and consequences of Batten disease resemble those of Alzheimer’s and Parkinson’s. Nevertheless, Batten disease is classified as a lysosomal storage disease, while Alzheimer’s and Parkinson’s are thought to be caused via other mechanisms.

However, some researchers see common mechanisms in the pathobiology of neurodegenerative lysosomal storage diseases such as Batten and of other neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Specifically, these include impairment of autophagy and increase in cytoplasmic protein aggregation. For example, some researchers have found relationships between mutations in the Alzheimer’s disease-related protein presenilin 1 and lysosomal dysfunction.

Since clinical trials of drugs for Alzheimer’s disease have so far been unsuccessful, study of alternative mechanisms for the pathogenesis of Alzheimer’s may be useful in developing new ways of addressing drug discovery for this devastating and all-too-common disease.

Discovery and development of gene therapies for Batten disease

The “Our Promise to Nicholas” website has a page entitled “Where your donations go”. According to that Web page, Nicholas’ disease was caused by a splice mutation in CLN2, which blocked production of TPP1. This is the most common mutation in children with the late infantile subtype of Batten Disease.

The same Web page discusses a gene therapy program led by Beverly Davidson, Ph.D. (then at the University of Iowa, Iowa City, IA), which had been supported by Our Promise To Nicholas Foundation. As of April 2014, Dr. Davidson joined the Children’s Hospital of Philadelphia (CHOP). At that time, Dr. Davidson became the director of CHOP’s Center for Cellular and Molecular Therapeutics. She has also continued her research on gene therapy for neurodegenerative diseases, including Batten disease, other neurologic lysosomal storage disorders, Huntington’s and Alzheimer’s diseases, and others.

While at Iowa, and continuing at CHOP, Dr. Davidson and her colleagues were investigating the use of adeno-associated virus (AAV) vectors carrying a functional TPP1 gene in treatment of late infantile Batten disease in animal models.

On November 11, 2015, Spark Therapeutics (Philadelphia, PA) announced that its first gene therapy program targeting a central nervous system (CNS) disease will target late infantile Batten disease. In that press release, it also announced that a report published in the 11 November issue of Science Translational Medicine provides preclinical proof of principle for Spark’s gene therapy, known as SPK-TPP1. The preclinical study, in a naturally occurring dog model, was led by Dr. Davidson at CHOP.

The study demonstrated the potential of a one-time administration of SPK-TPP1 to delay onset and progression of Batten disease in the dog model. SPK-TPP1 consists of Spark’s AAV2 vector carrying a functional TPP1 gene. The preclinical study showed that one-time administration of SPK-TPP1 to the ependymal cells of the brain ventricular system produced steady expression of the enzyme in the cerebrospinal fluid, and throughout the CNS. It also resulted in delayed onset of clinical symptoms and disease progression, protection from cognitive decline and extension of lifespan, as compared to untreated controls.

Based on these results, Spark plans to initiate Investigational New Drug Application (IND)-enabling studies in 2015.

Our November 2015 book-length report, Gene Therapy: Moving Toward Commercialization (published by Cambridge Healthtech Institute), contains a discussion of gene therapy vectors, including AAV. It also highlights Spark Therapeutics as a leader in AAV-based gene therapy and in gene-therapy treatments for retinal diseases. Spark’s technology platform had been developed over a 20-year period at CHOP.

As also discussed in our November 16, 2015 article on this blog, Spark has recently completed a Phase 3 pivotal trial of SPK-RPE65, a gene therapy for treatment of inherited retinal diseases (IRDs) caused by mutations in the gene for RPE65. SPK-TPP1 uses the same AAV2 vector as SPK-RPE65, and will utilize the same manufacturing processes. AAV2 has a neural tropism. Since the retina is an extension of the brain, researchers can utilize AAV2 vectors to target both tissues.

Conclusions

On the Web page “Where your donations go”, Dr. Davidson says that funding from “family foundations such as Our Promise to Nicholas Foundation” has provided much needed support. Their donations have allowed cutting-edge research to be conducted in a timely manner, rather than months or years after researchers develop the ideas for these studies. Moreover, interacting with Batten disease families is especially motivating, and the advisory role of scientists who review grant proposals for family foundations is valuable as well.

Our Promise to Nicholas is far from the only Batten disease “family foundation”. Other families of patients with juvenile and adult-onset Batten disease have formed foundations to fund research and awareness. For example, there are Nathan’s Battle Foundation and the Batten Disease Support and Research Association (BDSRA). Our Promise to Nicholas participated in the 2015 BDSRA Annual Conference, and worked together with other Batten disease family foundations to provide nursing care and childcare for the event. Thus when Dr. Davidson refers to “family foundations”, she is referring to several such organizations.

Dr. Davidson also pointed out that grant funding from the National Institutes of Health (NIH) has dramatically decreased in recent years due to Federal budget constraints. This has especially affected research on rare diseases such as Batten disease. Dr. Davidson believes that “family foundation support is being increasingly relied upon to fill a growing void in NIH funding”.

Funding of Dr. Davidson’s research by Our Promise to Nicholas Foundation and other family foundations has resulted in a gene therapy R&D program that has been adopted by one of the world’s leading gene therapy companies, Spark Therapeutics. Spark (in collaboration with Dr. Davidson’s group at CHOP) is taking its Batten disease program into the clinic, and intends to commercialize SPK-TPP1. Spark is also using its Batten disease program as the basis for its larger neurodegenerative disease program. Thus Our Promise to Nicholas Foundation has much to be proud of.

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Go to Top