25 June 2013

Cancer immunotherapy: the star of the ASCO Annual Meeting two years in a row!

By |2013-06-25T00:00:00+00:00June 25, 2013|Biomarkers, Cancer, Drug Development, Immunology, Monoclonal Antibodies|



On June 28, 2012 we published an article on this blog entitled “Cancer Immunotherapy: The Star Of The 2012 ASCO Annual Meeting”. Now comes the American Society of Clinical Oncology (ASCO) 2013 Annual Meeting, which took place from May 30 to June 3, 2013.

As in 2012, cancer immunotherapy was the star of the meeting.

In our June 2012 article, we focused on experimental monoclonal antibody (MAb) drugs that target the cell surface receptors programmed cell death-1 (PD-1) and programmed cell death-1 ligand (PD-L1). PD-1 is a member of the CD28/CTLA4 family of T cell regulators. Like CTLA4, the target of ipilimumab, PD-1 is a negative regulator of T-cell receptor signals. When PD-L1, which is a protein on the surface of some tumor cells, binds to PD-1 on T cells that recognize antigens on these tumor cells, this results in the blockage of the ability of the T cells to carry out an anti-tumor immune response. Anti-PD-1 MAb binds to PD-1 on T cells, thus preventing PD-L1 on tumor cells from binding to the PD-1 and initiating an inhibitory signal. Anti-tumor T cells are then free to initiate immune responses against the tumor cells. This mechanism of action is completely analogous to that of ipilimumab, which binds to CTLA4 and thus prevents negative signaling from that molecule.

Anti-PD-L1 therapeutics bind to PD-L1 on tumor cells. Ira Mellman (vice-president of research oncology at Genentech), believes that anti-PD-L1 might have fewer adverse effects than anti-PD-1. That is because anti-PD-L1 would target tumor cells while leaving T cells free to participate in immune networks that work to prevent autoimmune reactions.

Three experimental drugs in this area of immunotherapy were a main focus at ASCO in 2013. They are:

  • BMS’ anti-PD-1 agent nivolumab (BMS-936558, MDX-1106), which we had discussed in our 2012 ASCO article.
  • Merck’s anti-PD-1 agent lambrolizumab (MK-3475)
  • Roche/Genentech’s anti-PD-L1 agent MPDL3280A

We shall focus on these three agents in this article.

Competition between BMS’ nivolumab and Merck’s lambrolizumab

As highlighted in the 2013 ASCO meeting and in reports by industry commentators such as FierceBiotech, there is a keen race between BMS and Merck to be the first to market an anti-PD-1 agent.

At the ASCO 2013 meeting, BMS researchers and their colleagues reported that a third of the patients in a Phase 1 trial of nivolumab saw tumors shrink at least 30%. They also reported that patients with solid tumors [metastatic melanoma, non-small cell lung cancer (NSCLC) and renal cell carcinoma (RCC)] showed high rates of 2 year overall survival–44% for melanoma, 32% for NSCLC, and 52% for RCC (clinical trial NCT00730639).

In a first Phase 1 study of a combination therapy of nivolumab with ipilimumab in metastatic melanoma, BMS researchers and their colleagues reported that the two agents could be administered in combination safely. Clinical activity for the combination therapy appeared to exceed that of published monotherapy data for each of the two agents, with greater or equal to 80% tumor reduction at 12 weeks in 30% (11/37) of patients. In addition to the ASCO 2013 presentation, the results of this combination therapy trial were published online in the New England Journal of Medicine.

According to Fierce Biotech, BMS has 6 late-stage studies under way for nivolumab, with fast-track status in place for melanoma, lung cancer and kidney cancer.

Meanwhile, Merck announced in a June 2, 2013 press release the presentation at ASCO 2013 of interim data from a Phase 1B study evaluating its anti-PD-1 agent lambrolizumab in patients with advanced melanoma. The data was presented by Antoni Ribas, M.D., Ph.D. (Jonsson Comprehensive Cancer Center, University of California, Los Angeles). in addition to the ASCO 2013 presentation, this study was published online in the New England Journal of Medicine.

A total of 135 patients with advanced melanoma were treated. Most of the adverse events seen in the study were low grade. The confirmed response rate across all dose cohorts was 38%. The highest confirmed response rate (52%) was seen in the cohort that received the highest dose (10 mg per kilogram every 2 weeks). Ten percent of the patients in the highest-dose group achieved a complete response, with response duration ranging from 28 days to 8 months.

Response rates did not differ significantly between patients who had received prior ipilimumab treatment and those who had not. Responses were durable in the majority of patients; 81% of the patients who had a response (42 out of of 52 total) were still receiving treatment at the time of analysis in March 2013. The overall median progression-free survival among the 135 patients was over 7 months.

According to Fierce Biotech, Merck now has four clinical studies under way for lambrolizumab, including a  Phase 2 trial in melanoma and Phase 1 trials in ipilimumab-naïve patients with triple-negative breast cancer, metastatic bladder cancer and head and neck cancer. The company, which has won breakthrough drug designation from the FDA for lambrolizumab, believes that the ongoing 500-patient Phase 2 melanoma study could provide enough positive data to win FDA approval. Merck is also preparing applications for late-stage clinical trials in melanoma and non-small cell lung cancer, which are planned to launch in the third quarter of 2013.

Roche/Genentech’s anti-PD-L1 agent MPDL3280A

Genentech researchers and their collaborators presented data on a clinical study of MPDL3280A in patients with metastatic melanoma at ASCO 2013. In addition to the ASCO 2013 presentation and abstract, The Angeles Clinic and Research Institute (Los Angeles, CA) published a press release about the study. Omid Hamid, M.D. of The Angeles Clinic and Research Institute made the oral presentation at the ASCO meeting.

This study was a Phase 1, multicenter, first in human, open-label, dose escalation study (clinical trial NCT01375842), which is still ongoing. It was primarily designed to assess  safety, tolerability, and pharmacokinetics of MPDL3280A in patients with metastatic melanoma. The drug was found to be well tolerated. 35 patients who began treatment at doses of 1-20 mg/kg and were enrolled prior to Jul 1, 2012 were evaluable for efficacy. An overall response rate of 26% (9/35) was observed, with all responses ongoing or improving. Some responding patients experienced tumor shrinkage within days of initial treatment. The 24-week progression-free survival was 35%. Several other patients had delayed antitumor activity after apparent tumor progression. Of three initial patients treated with a combination of MPDL3280A and vemurafenib (Daiichi Sankyo/Genentech’s Zeboraf, a targeted kinase inhibitor), two experienced tumor shrinkage, including 1 complete response. The researchers concluded that further assessment of MPDL3280A as monotherapy and combination therapy is warranted. A Phase 1 study (NCT01656642) of a combination therapy of MPDL3280A and vemurafenib in patients with previously untreated BRAFV600-mutation positive metastatic melanoma is ongoing.

Data was also presented at ASCO 2013 on the efficacy of MPDL3280A in other solid tumors. According to Roy S. Herbst, M.D. Ph.D., (Yale Cancer Center and Smilow Cancer Hospital at Yale-New Haven) MPDL3280A showed significant anti-tumor activity and was well tolerated in patients with such cancers as NSCLC, melanoma, colorectal cancer, gastric cancer, and RCC. 29 of 140 evaluable patients (21%) exhibited tumor shrinkage, with the highest overall responses in patients with NSCLC and melanoma. Of the 29 responders, 26 patients continued responding as of their last assessment.

Researchers have also been studying PD-L1 expression levels as a potential biomarker to identify likely responders. As outlined by Dr. Herbst, responses appeared to be better among patients with higher levels of PD-L1 expression. The response rate among PD-L1-positive patients was 36% (13 of 36 patients), compared with 13% (9 of 67 patients) who were PD-L1-negative. The role that PD-L1 expression might play as a biomarker is still being explored, including attempting to determine the best way to measure the protein and other related criteria.

In addition to the Phase 1 trial of MPDL3280A/vemurafenib combination therapy in melanoma, Genentech is sponsoring a Phase 1 trial of MPDL3280A in combination with bevacizumab (Genentech/Roche’s Avastin, an angiogenesis inhibitor that targets vascular endothelial growth factor) or with bevacizumab plus chemotherapy (clinical trial NCT01633970). Genentech is also sponsoring a Phase 2 clinical trial (NCT01846416) of MPDL3280A in patients With PD-L1-positive advanced NSCLC.


The field of immunotherapeutic MAbs for cancer, which target negative regulators of T-cell receptor signals, continues to advance. The approval and marketing of ipilimumab provides an important proof-of-principle for this approach. Now the field is advancing to include agents that target PD-1 and its negative regulator PD-L1. Studies of BMS’ PD-1 inhibitor nivolumab have advanced as far as Phase 3, and of Merck’s lambrolizumab as far as Phase 2. Meanwhile, Roche/Genentech’s PD-L1 inhibitor MPDL3280A has reached Phase 2.

However, the in terms of clinical trial data, it is still too early to meaningfully determine the efficacy of any of the PD-1 and PD-L1 inhibitor drugs. The meaningful data will come from randomized Phase 3 trials, based on overall survival rather than tumor response rate as in currently reported trials (with the exception of the Phase 1 results of clinical trial NCT00730639 of nivolumab described earlier, which included measures of overall survival).

Nevertheless, this is an extremely exciting field, and researchers, companies, and patient communities have high expectations of success.


As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to  your company,  please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

17 June 2013

Agios Pharmaceuticals files for an IPO

By |2018-11-14T00:45:27+00:00June 17, 2013|Animal Models, Cancer, Drug Development, Drug Discovery, Epigenetics, Haberman Associates, Metabolism, Strategy and Consulting|

Agios Nikolaos Orfanos, Thessaloniki, Greece

Agios Nikolaos Orfanos, Thessaloniki, Greece

On June 11, 2013, Agios Pharmaceuticals (Cambridge, MA) filed with the U.S. Securities and Exchange Commission for an Initial Public Offering (IPO). The company plans to raise up to $86 million through this IPO. This news was reported by Fierce Biotech, the Boston Business Journal, and Xconomy, among others.

The Biopharmconsortium Blog has been following Agios since December 31, 2009, and we have posted three additional articles since. Our newest article, posted on December 28, 2012, announced the publication of an article  in the November 19, 2012 issue of Chemical & Engineering News (C&EN) by senior editor Lisa M Jarvis, in which I was quoted. More recently, Agios posted a reprint of that article on its website, which it retitled “Built to Last”. I had used that phrase in my quote in Ms. Jarvis’ article.

Agios specializes in the field of cancer metabolism. The company is working on multiple potential targets, with the goal of dominating that field, using its strong proprietary technology platform. Its financing strategy is aimed at building a company with the potential to endure as an independent firm over a long period of time–hence “built to last”. This contrasts with the recent trend toward “virtual biotech companies”–lean companies with only a very few employees that outsource most of their functions, and that are designed for early acquisition by a Big Pharma or large biotech company. Agios’ ambition to dominate the field of cancer metabolism requires a “built to last” strategy.

As Agios’ CEO David Schenkein said in the C&EN article, “You’re never going to get that with a one-target deal”. In support of that strategy, Agios has raised over a quarter of a billion dollars in funding. This has included two rounds of venture capital funding that raised a total of $111 million, and a partnership with Celgene that brought in a total of $141 million in upfront payments. According to the Fierce Biotech article, Celgene has committed to invest in Agios’ IPO.

As of yet, Agios has no drugs in clinical trials. However, the company has several drug candidates in early development. And according to the Fierce Biotech article, Agios intends to use the proceeds of the IPO to fund its first clinical trials. One of the company’s lead candidates, AG-221, which targets mutant isocitrate dehydrogenase 2 (IDH2), may reach the clinic soon, according to the Fierce Biotech article. Another Agios compound, AG-120, which targets mutant IDH1, is expected to enter the clinic in early 2014.

Recent developments in Agios’ research

The Biopharmconsortium Blog has been reporting on Agios’ research on mutant forms of IDH1 and IDH2, and their roles in human cancer, beginning with our December 31, 2009 article. Briefly, wild-type IDH1 and IDH2 catalyze the NADP+-dependent oxidative decarboxylation of isocitrate to α-ketoglutarate. However, mutant forms of IDH1and IDH2, which are found in certain human cancers, no longer catalyze this reaction, but instead catalyzes the NADPH-dependent reduction of α-ketoglutarate to R(-)-2-hydroxyglutarate (2-HG). The researchers have hypothesized that 2HG is an oncometabolite, and that developing mutant-specific small molecule inhibitors of IDH1 and IDH2 might inhibit the growth or reverse the oncogenic phenotype of cancer cells that carry the mutant enzymes.

As we reported in our December 28, 2012 article, Agios researchers and their collaborators reported a series of compounds that selectively inhibit the mutant form of IDH1. These compounds were found to lower tumor 2-HG in a xenograft model. More recently, on May 3, 2013, Agios researchers and their collaborators published two research reports in the journal Science, and the company also announced the results of these studies in a April 4, 2013 press release. According to that press release, the two reports are the first publications to show the effects of inhibiting mutant IDH1 and IDH2 in patient-derived tumor samples. These results constitute preclinical support for the hypothesis that the two mutant enzymes are driving disease, and that drugs that target the mutant forms of the enzymes can reverse their oncogenic effects.

In the first of these papers (Wang et al.), the researchers reported the development of the small-molecule compound AGI-6780 (a tool compound, not a clinical candidate), which potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. AGI-6780 is an allosteric inhibitor of this mutant enzyme. Treatment with AGI-6780 induced differentiation of two IDH2-bearing tumors in vitro: a TF-1 erythroleukemia genetically engineered to express IDH2, and primary human acute myelogenous leukemia (AML) carrying the IDH2 mutation. These data provide proof-of-principle that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for AML and other IDH2-driven cancers.

In the second paper (Rohle et al.), Agios researchers and their collaborators focused on a selective mutant IDH1 (R132H-IDH1) inhibitor, AGI-5198 (also a tool compound), which is one of the mutant IDH1 inhibitors that we referred to in our December 28, 2012 article. The researchers studied the effects of AGI-5198 on human glioma cells with endogenous IDH1 mutations. AGI-5198 inhibited, in a dose-dependent manner, the ability of the mutant IDH1 to produce 2-HG. Under conditions of near-complete inhibition of 2-HG production, AGI-5198 induced demethylation of histone H3K9me3 in chromatin, and also induced expression of genes associated with differentiation to glial cells (specifically astrocytes and oligodendrocytes). Blockade with AGI-5198 also impaired the growth of IDH1-mutant—but not IDH1–wild-type—glioma cells. Oral administration of AGI-5198 to mice with established R132H-IDH1 glioma xenografts resulted in impaired growth of the tumors. Treatment of mice with AGI-5198 was well-tolerated, with no signs of toxicity during 3 weeks of daily treatment.

It is possible that Agios’ IDH1/2 inhibitors do not inhibit tumor growth by inducing differentiation, at least in the case of AGI-5198 in glioma. Rohle et al. noted that although high-dose (450 mg/kg) AGI-5198 induced demethylation of histone H3K9me3 and induced gliogenic differentiation markers, a lower dose of AGI-5198 (150 mg/kg) did not. Nevertheless, the lower dose of AGI-5198 resulted in a similar tumor growth inhibition as did the the higher dose. This suggests that in glioma cells, mutant IDH1 regulates cell proliferation and cell differentiation via distinct pathways. These pathways may have different sensitivities to levels of 2-HG, with the differentiation-related pathway requiring increased inhibition of levels of 2-HG than the proliferation-related program.

Is differentiation therapy with IDH1/2 inhibitors sufficient to provide efficacious treatment of AML and/or glioma?

A companion Perspective, authored by Jiyeon Kim and Ralph J. DeBerardinis (Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX), was published in the same issue of Science as Wang et al and Rohle et al. Kim and DeBerardinis note that the selective mutant IDH1 and IDH2  inhibitors produced cytostatic rather than cytotoxic effects. Specifically, they induced cancer cell differentiation rather than cell death.

It is possible that inducing a permanent state of differentiation may be sufficient for therapeutic efficacy. However, the survival (in a differentiated, nontumor state) of viable cells still containing potentially oncogenic mutations may eventually give rise to cancer. Therefore, it is important to determine whether the therapeutic effects of these compounds will persist over long periods of time.

In discussing AGI-6780 as a differentiation therapy in hematopoietic malignancies, Wang et al. compared their results to the action of all-trans retinoic acid (ATRA) on acute promyelocytic leukemia (APL). ATRA has be used to treat APL, and it apparently works via relieving a block in differentiation present in these leukemic cells. The use of ATRA in APL has thus been taken as a paradigm of differentiation therapy, and it is used as such a paradigm by Wang et al.

We discussed the case of ATRA treatment of APL in our April 15, 2010 article on this blog. APL patients whose leukemia is due to a PML-RARα translocation in their promyelocytes (who constitute the vast majority of APL patients) initially respond to differentiation therapy with ATRA, but eventually develop resistance to the drug. Combination therapy of ATRA and arsenic trioxide (As 2O 3) cures the majority of patients, rendering a cancer that was once uniformly fatal 90% curable. As discussed in our 2010 article, this was first modeled in transgenic mice, and then applied to human patients. APL patients whose leukemia is due to a PLZF-RARα translocation in their promyelocytes are unresponsive to both ATRA and As 2O 3. However, as discussed in our 2010 article, the corresponding mouse model does respond to a combination of ATRA and a histone deacetylase (HDAC) inhibitor such as sodium phenylbutyrate.

When this combination therapy was tested in one patient in 1998 (presumably the first patient in a clinical trial), she achieved a complete remission. Presumably, clinical trials of newer, approved HDAC inhibitors [e.g., suberoylanilide hydroxamic acid (SAHA), Merck’s Vorinostat] in combination with ATRA could be carried out.  (The SAHA/ATRA combination has been tested in a mouse model of PLZF-RARα APL.)

As in the case of Agios’ AGI-5198, ATRA may work in part via a different mechanism than induction of differentiation in APL. This is despite this case being taken as a paradigm of differentiation therapy. We referred to this briefly in our April 19, 2010 blog post. ATRA appears to produce cancer cell growth arrest at least in part via inducing degradation of the PML-RARα fusion protein. Growth arrest and differentiation appear to be uncoupled in the case of the action of ATRA on PLZF-RARα-bearing cells. [The issue of the uncoupling of RARα transcriptional activation (which induces differentiation) and RARα degradation was investigated further in a study published in April 2013.]

Is it possible–as in the case of ATRA in APL–that Agios’ therapies for targeting mutant forms of IDH1/2 will require combination with another agent to achieve long-term therapeutic efficacy? Only clinical trials can answer this question. However, perhaps it might be possible to design animal models to test this issue, and to use these models to identify agents that may be productively used in combination with the IDH1/2 inhibitors.


Agios IPO comes amidst a boom in biotech IPOs–especially Boston biotech IPOs. In addition to Agios, recent Boston-area IPOs include Epizyme (Cambridge, MA), TetraPhase Pharmaceuticals (Watertown, MA) and Enanta Pharmaceuticals (Watertown, MA). According to a June 14 2013 article in the Boston Business Journal, bluebird bio (Cambridge, MA) is also expected to complete its IPO during the week of June 17, 2013. We discussed bluebird bio in our October 11, 2012 Biopharmconsortium Blog article.

As with Agios, neither Epizyme, TetraPhase, Enanta, nor bluebird has any revenues from approved and marketed therapeutics. However, unlike Agios, all of these four companies have drug candidates that have reached the clinic. In addition, TetraPhase and Enanta have compounds that have completed Phase 2 clinical trials, and thus have presumably achieved proof-of-concept in humans. Thus the stock of these two companies appear to be lower risk investments than that of Agios, despite Agios’ very compelling scientific and strategic rationale. At least until its compounds achieve proof-of-concept in human studies, investing in Agios is mainly for sophisticated investors who have a high tolerance for risk. ____________________________________________________

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to  your company,  please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Go to Top