Biopharmconsortium Blog

Expert commentary from Haberman Associates biotechnology and pharmaceutical consulting.
Wayland MA Source:

Wayland MA Source:

Russell’s Garden Center, on Route 20, a family-owned business established in 1876, is a unique Wayland MA institution. When you shop at Russell’s and approach the check-out counter with your plants, flowers, or other purchases, you will see a donation box for a rare-disease charity called “Our Promise to Nicholas Foundation”.

This charity is named for Nicholas R. Dainiak, a Bedford MA boy who died on his 11th birthday in 2014, after “a courageous six year battle with Batten’s disease”. The primary mission of the foundation is to raise funds and create partnerships aimed at promoting awareness, providing education, and developing translational research in Batten disease.

One of the events that the Foundation sponsors in order to raise funds and awareness is the John Tanner Memorial 5-K Run and Walk, which this year took place on October 4, 2015 in Wayland. This event memorializes both Nicholas and John Tanner. John Tanner was a competitive runner who devoted all of his races over 5 years to raising awareness about Nicholas and Batten disease. He was also a long-time employee of Russell’s Garden Center—hence the Russell’s and Wayland connection to the Foundation. John Tanner died unexpectedly while running the NYC half marathon in the spring of 2013.

Batten disease

Batten disease is a very rare, fatal, autosomal recessive neurodegenerative disorder that usually begins in childhood. Juvenile Batten disease is one of a group of disorders known as neuronal ceroid lipofuscinoses (NCLs). NCLs may be caused by one of over 400 different mutations. They affect the nervous system with vision loss, seizures, movement disorders, slow learning, altered thought processes, and cognitive decline.

Although Batten disease was originally used to describe only the juvenile form of NCL the term “Batten disease” is now widely used to refer to all forms of NCL, including adult-onset disease. Juvenile NCL, the most prevalent form of Batten disease, has been linked to mutations in the CLN3 gene. Late infantile NCL has been linked to mutations in NCL2.

Batten disease is a type of lysosomal storage disease. The CLN3 gene codes for a protein called battenin, which is found principally in lysosomes and in endosomes. The protein’s function is currently unknown. The CLN2 gene codes for a lysosomal enzyme called tripeptidyl peptidase 1 (TPP1), which is an acid protease.

Mutations in CLN2, CLN3, and other Batten disease genes result in the accumulation of lipofuscins in the tissues of the body. Lipofuscins are lipoproteins that form autofluorescent ceroid (i.e., waxy) deposits throughout the body of Batten disease patients.  Lipopfuscin deposits can sometimes be detected visually in the back of the eye. As the disease progresses, the deposits in the retina appear more pronounced, and ophthalmologists see circular bands of different shades of pink and orange in the patient’s optic nerve and retina. Ceroid lipofuscins are a hallmark of Batten disease, and appear to cause disease symptoms.

Juvenile Batten disease has an estimated incidence between 0.5 – 8 per 100,000 live births, with an average of 1.2. Despite its rarity, juvenile Batten disease appears to be the most common form of pediatric neurodegenerative disease. In addition to Batten disease patients, there are approximately 440,000 asymptomatic people in the United States who are carriers of juvenile Batten disease who have one copy of a mutated version of the CLN3 gene.

As with other rare diseases, a typical Batten disease patient may visit 8 physicians and receives 2 to 3 misdiagnoses before being correctly diagnosed. This may take many years. In the case of Nicholas, he had several misdiagnoses and mis-treatments over the early course of his disease, from age 4 to age 5. It was a ophthalmologist who finally correctly diagnosed Nicholas with Batten disease.

Relationship between Batten disease and more common neurodegenerative diseases

The written material next to the donation box for “Our Promise to Nicholas” in Russell’s Garden Center claims that study of Batten disease may lead to a greater understanding of such neurodegenerative diseases of aging as Alzheimer’s and Parkinson’s disease. Some of the symptoms and consequences of Batten disease resemble those of Alzheimer’s and Parkinson’s. Nevertheless, Batten disease is classified as a lysosomal storage disease, while Alzheimer’s and Parkinson’s are thought to be caused via other mechanisms.

However, some researchers see common mechanisms in the pathobiology of neurodegenerative lysosomal storage diseases such as Batten and of other neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Specifically, these include impairment of autophagy and increase in cytoplasmic protein aggregation. For example, some researchers have found relationships between mutations in the Alzheimer’s disease-related protein presenilin 1 and lysosomal dysfunction.

Since clinical trials of drugs for Alzheimer’s disease have so far been unsuccessful, study of alternative mechanisms for the pathogenesis of Alzheimer’s may be useful in developing new ways of addressing drug discovery for this devastating and all-too-common disease.

Discovery and development of gene therapies for Batten disease

The “Our Promise to Nicholas” website has a page entitled “Where your donations go”. According to that Web page, Nicholas’ disease was caused by a splice mutation in CLN2, which blocked production of TPP1. This is the most common mutation in children with the late infantile subtype of Batten Disease.

The same Web page discusses a gene therapy program led by Beverly Davidson, Ph.D. (then at the University of Iowa, Iowa City, IA), which had been supported by Our Promise To Nicholas Foundation. As of April 2014, Dr. Davidson joined the Children’s Hospital of Philadelphia (CHOP). At that time, Dr. Davidson became the director of CHOP’s Center for Cellular and Molecular Therapeutics. She has also continued her research on gene therapy for neurodegenerative diseases, including Batten disease, other neurologic lysosomal storage disorders, Huntington’s and Alzheimer’s diseases, and others.

While at Iowa, and continuing at CHOP, Dr. Davidson and her colleagues were investigating the use of adeno-associated virus (AAV) vectors carrying a functional TPP1 gene in treatment of late infantile Batten disease in animal models.

On November 11, 2015, Spark Therapeutics (Philadelphia, PA) announced that its first gene therapy program targeting a central nervous system (CNS) disease will target late infantile Batten disease. In that press release, it also announced that a report published in the 11 November issue of Science Translational Medicine provides preclinical proof of principle for Spark’s gene therapy, known as SPK-TPP1. The preclinical study, in a naturally occurring dog model, was led by Dr. Davidson at CHOP.

The study demonstrated the potential of a one-time administration of SPK-TPP1 to delay onset and progression of Batten disease in the dog model. SPK-TPP1 consists of Spark’s AAV2 vector carrying a functional TPP1 gene. The preclinical study showed that one-time administration of SPK-TPP1 to the ependymal cells of the brain ventricular system produced steady expression of the enzyme in the cerebrospinal fluid, and throughout the CNS. It also resulted in delayed onset of clinical symptoms and disease progression, protection from cognitive decline and extension of lifespan, as compared to untreated controls.

Based on these results, Spark plans to initiate Investigational New Drug Application (IND)-enabling studies in 2015.

Our November 2015 book-length report, Gene Therapy: Moving Toward Commercialization (published by Cambridge Healthtech Institute), contains a discussion of gene therapy vectors, including AAV. It also highlights Spark Therapeutics as a leader in AAV-based gene therapy and in gene-therapy treatments for retinal diseases. Spark’s technology platform had been developed over a 20-year period at CHOP.

As also discussed in our November 16, 2015 article on this blog, Spark has recently completed a Phase 3 pivotal trial of SPK-RPE65, a gene therapy for treatment of inherited retinal diseases (IRDs) caused by mutations in the gene for RPE65. SPK-TPP1 uses the same AAV2 vector as SPK-RPE65, and will utilize the same manufacturing processes. AAV2 has a neural tropism. Since the retina is an extension of the brain, researchers can utilize AAV2 vectors to target both tissues.


On the Web page “Where your donations go”, Dr. Davidson says that funding from “family foundations such as Our Promise to Nicholas Foundation” has provided much needed support. Their donations have allowed cutting-edge research to be conducted in a timely manner, rather than months or years after researchers develop the ideas for these studies. Moreover, interacting with Batten disease families is especially motivating, and the advisory role of scientists who review grant proposals for family foundations is valuable as well.

Our Promise to Nicholas is far from the only Batten disease “family foundation”. Other families of patients with juvenile and adult-onset Batten disease have formed foundations to fund research and awareness. For example, there are Nathan’s Battle Foundation and the Batten Disease Support and Research Association (BDSRA). Our Promise to Nicholas participated in the 2015 BDSRA Annual Conference, and worked together with other Batten disease family foundations to provide nursing care and childcare for the event. Thus when Dr. Davidson refers to “family foundations”, she is referring to several such organizations.

Dr. Davidson also pointed out that grant funding from the National Institutes of Health (NIH) has dramatically decreased in recent years due to Federal budget constraints. This has especially affected research on rare diseases such as Batten disease. Dr. Davidson believes that “family foundation support is being increasingly relied upon to fill a growing void in NIH funding”.

Funding of Dr. Davidson’s research by Our Promise to Nicholas Foundation and other family foundations has resulted in a gene therapy R&D program that has been adopted by one of the world’s leading gene therapy companies, Spark Therapeutics. Spark (in collaboration with Dr. Davidson’s group at CHOP) is taking its Batten disease program into the clinic, and intends to commercialize SPK-TPP1. Spark is also using its Batten disease program as the basis for its larger neurodegenerative disease program. Thus Our Promise to Nicholas Foundation has much to be proud of.


As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Baby_Face Source:

Baby_Face Source:

In November 2015, the use of gene editing technology to treat an 11-month-old child with leukemia was reported in news articles in Nature and in Science. Because of the human-interest value of this story, it was also reported in Time magazine and in the New York Times.

Data from this first-in-humans clinical use of the therapy will be presented at the 57th American Society of Hematology (ASH) Annual Meeting in Orlando, FL in early December 2015.

The young patient was treated with a complex cellular immunotherapy regimen developed by Cellectis (Paris, France and New York, NY). Cellectis’ platform involves production of allogeneic (rather than autologous) chimeric antigen receptor (CAR) T-cells to create an “off-the-shelf solution” to cellular immunotherapy for cancer, potentially simplifying manufacturing and standardization of therapies.

We have discussed CAR T-cell therapies on this blog, and—in more detail—in two book-length reports published by Cambridge Healthtech Institute (CHI). These are our 2014 Cancer Immunotherapy report, and our new November 2015 report, Gene Therapy: Moving Toward Commercialization.

CAR T-cell therapies directed against the B-cell antigen CD19, being developed by Novartis/University of Pennsylvania, Juno Therapeutics, and Kite Pharma, have demonstrated impressive clinical results against B-cell leukemias and lymphomas. However, in order to avoid immune incompatibility, CAR T-cell must be constructed and manufactured using autologous T-cells derived from the patient to be treated. This is an expensive and laborious process. Hence the rationale for allogeneic CAR T-cell therapy.

Cellectis uses gene editing in construction of its allogeneic CAR T-cells. Specifically, the company first modifies T-cells from healthy donors with an anti-CD19 CAR gene construct, similar to the methods used by other companies that are developing anti-CD19 CAR cellular immunotherapies. Cellectis then uses gene editing based on transcription activator-like effector nucleases (TALENS) to disrupt expression of the T-cells’ TCR (T-cell receptor) genes. It is the TCRs of the transplanted T cells that recognize the patient’s own cells as foreign, and thus attack them. Cellectis also uses TALENS gene editing to disrupt expression of a gene for another cell-surface protein, CD52. CD52 is present on mature lymphocytes, and is the target of the monoclonal antibody drug alemtuzumab (Genzyme’s Lemtrada). Researchers can then use alemtuzumab to prevent host-mediated rejection of the HLA mismatched CAR19 T cells. Cellectis’ “Talen engineered universal CAR19 T cells” can thus in principle be used to treat any patient with B-ALL (B-cell acute lymphoblastic leukemia), instead of autologous anti-CD19 CAR T-cells.

The treatment of the young patient, Layla Richards of London, was on a compassionate use basis. She had refractory relapsed B-ALL, and was expected to die shortly. Meanwhile, Cellectis had a universal CAR19 (UCART19) cell bank in the same hospital in which Layla was being treated. The cell bank had been characterized in detail, in preparation for submission for regulatory approval and Phase 1 testing.

Prior to administration of the UCART19 cells, the patient received lymphodepleting chemotherapy (including administration of alemtuzumab). After getting the UCART19 cells in June 2015 (near her first birthday), Layla went into remission, and has no trace of leukemia. After about three months she had a bone marrow transplant to help her immune system recover, and is now at home. However the follow-up period since her treatment has only been 5 months. Therefore, Layla’s doctors do not yet know how durable the remission will be. The key question is how long the UCART19 cells can survive in the body and prevent recurrence of leukemia.

Gene editing companies and their technologies discussed in our November 2015 report

Our November 2015 gene therapy report includes a chapter (Chapter 8) that focuses on gene-editing technologies and on companies that are developing therapies based on these technologies. The gene-editing technology that has been getting the most attention from the scientific and financial communities is known as CRISPR/Cas9. The other two technologies discussed in Chapter 8 are TALENS and zinc-finger nucleases (ZFN). The basic principle of these gene-editing technologies is that a “molecular scissors” makes a specific double-strand break in a deleterious DNA sequence. This break is either repaired in such a way as to disrupt the gene by forming deletions or mutations, or—if a suitable donor DNA is provided—the deleterious gene is replaced with a desired, functional gene sequence.

Gene-editing specialty companies discussed in our report based on CRISPR/Cas9 technology include Editas Medicine (Cambridge, MA) (which also utilizes TALENS), Intellia Therapeutics (Cambridge MA), CRISPR Therapeutics (Basel, Switzerland; Stevenage, U.K.; and Cambridge MA), and Caribou Biosciences (Berkeley, CA). Sangamo BioSciences (Richmond, CA), which is also discussed in our report, is a pioneer in ZFN technology.

Despite the predominant focus on CRISPR/Cas9 technology and companies in the biotechnology and venture capital communities, the first clinical studies involving gene editing have used Sangamo’s ZFN technology. These studies are in the field of HIV/AIDS. They involve ex vivo treatment of HIV-infected patients’ T-cells with a specific ZFN-based vector, in order to render the patients resistant to further manifestations of the disease.

Meanwhile, Editas has developed a vector designed to enable the company to move its CRISPR/Cas9 technology into the clinic. Editas’ first clinical program will be a potential treatment for a form of the genetically-driven retinal disease, Leber congenital amaurosis (LCA). (This is a different form of LCA than the one being targeted by Spark Therapeutics, which we discussed in our November 16, 2015 article on this blog).

bluebird bio (Cambridge, MA) is also pursuing a gene-editing technology program based on homing endonucleases and MegaTAL enzymes. This research and preclinical-stage program came to bluebird via its 2014 acquisition of Precision Genome Engineering Inc. (Seattle WA).

Cellectis is not the only company that is combining CAR T-cell therapies with gene-editing technology. In May 2015, Editas formed a collaboration with Juno Therapeutics to pursue research programs that combine Editas’ genome editing technologies with Juno’s CAR and TCR T-cell technologies.


Despite the great deal of excitement about gene-editing technologies and companies (especially CRISPR/Cas9) these are early days for development of therapies based on these technologies. Despite the almost miraculous results in the treatment of Layla Richards, it is only one case, and the follow-up period has been short. Nevertheless, this one case may open the way for this therapy to be used in other “desperate situations” where there is no time, or it is not possible, to use a patient’s own T cells. And researchers are already speculating that a similar technique may be used to treat people with other blood cancers, and eventually people with solid tumors.

For more information on our November 2105 gene therapy report, or to order it, see the CHI Insight Pharma Reports website.


As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Adeno-associated virus, a common gene therapy vector. Source:

Adeno-associated virus, a common gene therapy vector. Source:

On November 6, 2015, Cambridge Healthtech Institute (CHI) announced the publication of a new book-length report, Gene Therapy: Moving Toward Commercialization, by Allan B. Haberman, Ph.D.

As demonstrated by several late-breaking news items that appeared as our report was in the process of publication, gene therapy is a “hot”, fast-moving field. For example:

On October 5, 2015, Spark Therapeutics (Philadelphia, PA) announced positive top-line results from the Phase 3 pivotal trial of SPK-RPE65, a gene therapy for treatment of inherited retinal diseases (IRDs) caused by mutations in the gene for RPE65. This trial met its primary endpoint, and there were no serious adverse events related to treatment with the therapy. In results presented at a scientific meeting later in October, SPK-RPE65 was found to give durable improvements in vision over a three-year period.

SPK-RPE65 is not only Spark’s most advanced gene therapy in development, but is the most advanced gene therapy for retinal disease of any company. It is covered in our report.

bluebird’s LentiGlobin BB305—including the company’s strategy for commercializing this product—is also discussed in our report. In bluebird’s November 5, 2015 presentation at the American Society of Hematology (ASH) Annual Meeting, it was revealed that in Phase 1/2 clinical trials, LentiGlobin BB305 rendered the few sickle-cell disease patients in the trials transfusion-free and hospitalization-free for at least six months. Among patients with severe beta-thalassemia, all except for those with the β0/β0 genotype were rendered transfusion-free for at least 90 days, with a median of 287 days transfusion-free. Two of the β0/β0 patients (who made no hemoglobin at baseline) received a single transfusion post-discharge, and the third β0/β0 patient remains transfusion-dependent.

The stock market had focused on the negative results with the β0/β0 patients, and thus bluebird stock lost over 20% of its value after the ASH abstracts were released. However, the β0/β0 patients represent only one-third of the beta-thalassemia market, and sickle-cell disease is a larger market than beta-thalassemia. Thus, provided further clinical trials are positive, LentiGlobin BB305 can still be a successful product. bluebird is increasing the number of patients who will be enrolled in the trial from eight to 20, so more data should be forthcoming in 2016.

In corporate gene therapy news, Spark Therapeutics recently opened a new satellite office in the Boston area, joining Boston-area gene therapy companies bluebird bio, Dimension Therapeutics, and Voyager Therapeutics. All are discussed in our report. Spark and bluebird are public companies, and Dimension and Voyager recently went public. In addition, uniQure, the company that developed the first approved gene therapy product, opened a Lexington MA office and manufacturing facility in 2013. Boston has thus become Gene Therapy Central. As discussed in our report, Boston is also the most important center for companies that focus on gene editing, based on CRISPR/Cas9 technology.

These and other recent news articles and scientific publications attest to the progress of gene therapy, which only a few years ago was considered to be a “premature technology”.

Our gene therapy report looks at how researchers have been working to overcome critical barriers to development of safe and efficacious gene therapy, from 1990 to 2015. It then focuses on clinical-stage gene therapy programs that are aimed at commercialization, and the companies that are carrying out these programs. A major theme of the report is whether gene therapy can attain near-term commercial success, and what hurdles still need to be overcome.

Topics covered in the report:

  • Development of improved vectors (integrating and non-integrating vectors)
  • Gene therapy for ophthalmological diseases
  • Gene therapy for hemophilias and other rare diseases
  • Gene therapy for more common diseases (e.g., Parkinson’s disease, osteoarthritis, and heart failure)
  • Companies whose central technology platform involves ex vivo gene therapy
  • Gene editing technology
  • Outlook for gene therapy
  • Outlook for eight gene therapy products expected to reach the market before 2020

The report also includes:

  • An exclusive interview with Sam Wadsworth, Ph.D., the Chief Scientific Officer of Dimension Therapeutics and former Head of Gene Therapy R&D at Genzyme
  • The results and an analysis of a survey of individuals working in gene therapy, conducted by Insight Pharma Reports in conjunction with this report.
  • Companies profiled: uniQure, Spark Therapeutics, GenSight, Dimension Therapeutics, Voyager Therapeutics, Oxford BioMedica, bluebird, Juno Therapeutics, Kite Pharma, Editas, and others.

Our report is designed to enable you to understand current and future developments in gene therapy. It is also designed to inform the decisions of leaders in companies and in academic groups that are working in gene therapy R&D and in development of gene therapy enabling technologies.

For more information on the report, or to order it, see the CHI Insight Pharma Reports website.


As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

OX40 Protein Source: Emw

OX40 Protein Source: Emw

Haberman Associates has a new website, with the same URL as previously but with many improvements. This article is the first Biopharmconsortium Blog post to be posted after the new website has gone online. Please explore the new site, and send any comments on the site to us.

In addition to announcing our new website, this article is designed to outline several new areas of cancer immunotherapy R&D.

Research and development of novel checkpoint inhibitors for cancer immunotherapy

Our September 2014 book-length Insight Pharma Report, “Cancer Immunotherapy: immune checkpoint inhibitors, cancer vaccines, and adoptive T-cell therapies” focused on agents that had reached the clinic. In the case of checkpoint inhibitors, the report did not cover the universe of immune checkpoints, but only those that have been addressed with late-stage agents, some of which had entered—or were about to enter—the market. However, as we stated in the report, researchers expect new experimental products to emerge from immune checkpoint research in the next 5-10 years.

In the report, we mentioned research on agents to target the lymphocyte-activation gene 3 (LAG-3, CD223) pathway. In a published study in mice, Bristol-Myers Squibb (BMS) researchers and their academic collaborators obtained evidence that dual treatment with an anti-PD-1 (such as BMS’ nivolumab) and an anti-LAG-3 monoclonal antibody (MAb) cured most mice of established tumors that were largely resistant to single antibody treatment. They concluded that dual blockade of PD-1 and LAG-3 might constitute a viable strategy for cancer immunotherapy, which might be superior to blocking PD-1 alone.

At the time of our report’s publication, BMS had initiated two Phase 1 safety studies with an investigational anti-LAG-3 MAb. These are a study of anti-LAG-3 with and without anti-PD-1 in treatment of solid tumors (clinical trial number NCT01968109), and a study of anti-LAG-3 in relapsed or refractory chronic lymphocytic leukemia (CLL), Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL) (clinical trial number NCT02061761). Both of these studies are still ongoing and recruiting patients.

Another checkpoint inhibitor target that is begin investigated (in preclinical studies) for potential use in cancer immunotherapy is TIM-3 (T-cell immunoglobulin domain and mucin domain 3). TIM-3 is is co-expressed on PD-1+ CD8 T cells in mouse models with solid tumors or hematologic malignancies. In a preclinical mouse melanoma model, combined blockade of TIM-3 and PD-1, or TIM-3 and CTLA4, was more effective in prolonging survival than blocking either protein alone. Moreover, the combination of anti-CTLA4, anti-TIM-3 and anti-LAG-3 produced further suppression of growth of the melanoma tumor. These data suggest that blockade of multiple inhibitory receptors—including TIM-3 and LAG-3—results in synergistic antitumor activity.

Research and development of agonist antibodies for use in cancer immunotherapy

Another approach to antibody-based cancer immunotherapy—in addition to targeting checkpoint inhibitors—is development of agonist antibodies. This is the subject of an upcoming conference in Boston—sponsored by Cambridge Healthtech Institute (CHI), on May 7-8, 2015. This conference is part of CHI’s annual PEGS Boston (Essential Protein Engineering Summit). Agonist antibodies target certain cell surface proteins on T cells, resulting in stimulation of the activity of the T cells. This contrasts with checkpoint inhibitors, which are designed to overcome blockages to T cell activity mediated by immune checkpoints.

Among the targets for agonist antibodies are two members of the tumor necrosis receptor (TNFR) superfamily—CD27 and OX40.

Celldex Therapeutics’ fully-human monoclonal antibody (MAb) agent varlilumab (CDX-1127) targets CD27. As discussed in our cancer immunotherapy report, activation of naïve T-cells requires both T-cell receptor (TCR) signaling and costimulation by a “second signal”. In our report, we used the example of CD28 (present on the surface of T cells) interacting with B7 [present of the surface of an antigen-presenting cell (APC) such as a dendritic cell] to deliver a “second signal”. CD27 is a member of the CD28 superfamily, and it interacts with CD70 to deliver a “second signal”. Varlilumab can substitute for CD70, and deliver a costimulatory signal to T cells whose TCRs are engaged. This can change a weak immune response into a strong, prolonged response. In preclinical models, immunostimuation by varlilumab has been shown to mediate antitumor effects.

In addition to the immunostimulatory activity of varlilumab, this agent may also exert direct therapeutic effects against tumors that express CD27 at high levels, such as human B and T cell lymphomas. Varlilumab has shown potent anti-tumor activity against these lymphomas in preclinical models. In these models, varlilumab may exert its therapeutic activity both via “second-signal” immune activation, and via direct antitumor activity against CD27-bearing lymphoma cells.

Varlilumab is now in ongoing Phase 1 clinical trials against solid and hematological tumors (clinical trial number NCT01460134), and in ongoing Phase 1 and Phase 2 trials in combination with the anti-PD-1 MAb agent nivolumab (BMS’ Opdivo) against advanced refractory solid tumors (clinical trial number NCT02335918). Reports of interim data from clinical trials of varlilumab at scientific meetings in 2013 and in 2014 indicate that this agent was very well tolerated and demonstrated biological activity and signs of clinical activity against advanced, treatment-refractory lymphoid malignancies and metastatic melanoma and renal cell carcinoma.

On March 17, 2015 Celldex announced that it had entered into an agreement with Roche to evaluate the safety, tolerability and preliminary efficacy of varlilumab in combination with Genentech/Roche’s investigational anti-PDL1 agent MPDL3280A in a Phase 1/2 study in renal cell carcinoma. This is based on preclinical studies that suggest that the combination of these two agents may be synergistic, and enhance anti-tumor immune response as compared to either agent alone. In Celldex’s Phase 1 study of varlilumab in multiple solid tumors, promising signs of clinical activity had been seen in patients with refractory renal cell carcinoma. This included a durable partial response (11.0+ months) with decreases in tumor volume over time, and 4 patients with stable disease over periods ranging from 5.3 to 30.7+ months.

Another target for agonist MAbs in immuno-oncology is OX40. MedImmune (the global biologics R&D arm of AstraZeneca) is testing the OX40 agonist MAb MEDI6383 in an ongoing Phase 1 clinical trial (clinical trial number NCT02221960) against recurrent or metastatic solid tumors. MedImmune’s OX40 program is based on technology developed by AgonOx (Portland, OR). The two companies entered into an exclusive global partnership to develop OX40 agonists in 2011.

OX40 is a costimulatory receptor that can potentiate TCR signaling in T cells, leading to the activation of these cells by antigens recognized by their TCRs. Engagement of OX40 by its natural ligands on dendritic cells, or by anti-OX40 antibodies initiates a signal transduction cascade that enhances T cell survival, proliferation, and cytokine production, and can augment immune responses to tumors. Preclinical studies have shown that OX40 agonist antibodies increase antitumor immunity and improve tumor-free survival. A Phase 1 clinical study of an mouse anti-OX40 agonist MAb in patients with advanced cancer was carried out by researchers at the Providence Portland Medical Center in Portland, OR. (AgonOx is a spin-off of the Providence Portland Medical Center.) The study (clinical trial number NCT01644968), whose results were published in 2013, found that treatment with one course of the anti-OX40 MAb induced regression of at least one tumor metastasis in 12 of 30 patients, and exhibited an acceptable toxicity profile. Treatment with the agent also increased the antitumor reactivity of T and B cells in patients with melanoma.

In the upcoming CHI agonist antibody conference, Scott A. Hammond, Ph.D., Principal Scientist, Oncology Research at MedImmune will discuss the preclinical characterization of MedImmune’s OX40 agonists now in clinical trials.


The studies on novel immune checkpoint inhibitors and agonist antibodies illustrate that researchers are continuing to advance the frontiers of immuno-oncology beyond the late-stage MAb agents described in our report. Moreover, many of these studies involve clinical trials of combination therapies of the novel agents with other therapeutics discussed extensively in our report, including the CTLA-4 inhibitor ipilimumab (Medarex/BMS’s Yervoy), the PD-1 inhibitors nivolumab (BMS’ Opdivo) and pembrolizumab (Merck’s Keytruda), and the PD-L1 inhibitor MPDL3280A (Genentech/Roche). This is consistent with the idea that “the future of cancer immunotherapy is combination therapy”. In the survey that Insight Pharma Reports conducted in conjunction with our report, 80% of respondents agreed with this statement.

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.

Pre-1917 Russian Happy Christmas and Happy New Year card

Pre-1917 Russian Happy Christmas and Happy New Year card

As is their customary practice, both Nature and Science ran end-of-year specials. The Nature special (in their 18 December issue) is entitled “365 days: Nature’s 10. Ten people who mattered this year.” The Science special (in their 19 December issue) is entitled, as usual “2014 Breakthrough of the Year.” As is also usual, there is a section for “Runners Up” to the year’s “Breakthrough”.

From the point of view of a consulting group—and a blog—that focuses on effective drug discovery and development strategies, we were disappointed with both end-of-year specials. Most of the material in these articles was irrelevant to our concerns.

Science chose the Rosetta/Philae comet-chasing mission as the “Breakthrough of the Year”, and its “runners up” included several robotics and space-technology items, as well as new “letters” to the DNA “alphabet” that don’t code for anything.

Nature also focused on comet chasers, robot makers, and space technologists, as well as cosmologist and mathematicians, and a fundraising gimmick—“the ice-bucket challenge”. Moreover, Nature was much too restrictive in titling its article “Ten people who mattered”. Every human being matters!

Nevertheless, these two special sections do contain a few gems that are both relevant to effective drug discovery and development, and are worthy of highlighting as “notable researchers of 2014” and “breakthrough research of 2014”. We discuss these in the remainder of this article.

Suzanne Topalian, M.D.

Suzanne Topalian is one of the researchers profiled in “Nature’s 10”. She is a long-time cancer immunotherapy clinical researcher who began her career in 1985 in the laboratory of cancer immunotherapy pioneer Steven Rosenberg at the National Cancer Institute (Bethesda MD). In the early days of the field, when cancer immunotherapy was scientifically premature, there was a great deal of skepticism that these types of treatments would even work. However, both Dr. Rosenberg and Dr. Topalian persevered in their research.

In 2006, Dr. Topalian moved to Johns Hopkins University (Baltimore, MD) to help launch clinical trials of Medarex/Bristol-Myers Squibb/Ono’s nivolumab, a PD-1 inhibitor. As noted in the Nature article, her work “led to a landmark publication in 2012 showing that nivolumab produced dramatic responses not only in some people with advanced melanoma but also in those with lung cancer [specifically, non–small-cell lung cancer, NSCLC].” We also discussed that publication on the Biopharmconsortium Blog, and in our recently published book-length Insight Pharma Report, Cancer Immunotherapy: immune checkpoint inhibitors, cancer vaccines, and adoptive T-cell therapies. Our report also includes discussions of Dr. Rosenberg’s more recent work in cellular immunotherapy.

As discussed in our report, nivolumab was approved in Japan as Ono’s Opdivo in July 2014 for treatment of unresectable melanoma, and a competitive PD-1 inhibitor, pembrolizumab (Merck’s Keytruda) was approved in the United States for advanced melanoma on September 5, 2014. More recently, on December 22, 2014, the FDA also approved nivolumab (BMS’ Opdivo) for advanced melanoma in the U.S. There are thus now two FDA-approved PD-1 inhibitors [in addition to the CTLA-4 inhibitor ipilimumab (BMS’ Yervoy)] available for treatment of advanced melanoma in the U.S.

Meanwhile, researchers continue to test both nivolumab and pembrolizumab for treatment of NSCLC and other cancers. And some analysts project that both of these agents are likely to be approved by the FDA for treatment of various populations of patients with NSCLC before the middle of 2015. Researchers are also testing combination therapies that include nivolumab or pembrolizumab in various cancers. And clinical trials of Genentech/Roche’s PD-L1 blocking agent MPDL3280A are also in progress.

Science’s 2013 Breakthrough of the Year was cancer immunotherapy, as we highlighted in our New Year’s 2014 blog article. Science could not make cancer immunotherapy the Breakthrough of the Year for 2014, too. Thus it chose to give physical scientists a turn in the limelight by highlighting the comet-chasing mission instead. Nevertheless, 2014 was the year in which cancer immunotherapy demonstrated its maturity by the regulatory approval of the two most advanced checkpoint inhibitor agents, pembrolizumab and nivolumab.

Implications for patients with terminal cancers

The clinically-promising results of cancer immunotherapy in a wide variety of cancers, coupled with the very large numbers of clinical trials in progress in this area, has also changed the situation for patients who have terminal cancers. Researchers who are conducting clinical trials of immunotherapies for these cancers are actively recruiting patients, of whom there are limited numbers at any one time. For example, there are now numerous clinical trials—mainly of immunotherapies—in pancreatic cancer, and most of these trials are recruiting patients. There are also active clinical trials of promising immunotherapies in the brain tumor glioblastoma. These are only two of many examples.

Recently, a 29-year-old woman with terminal glioblastoma ended her life using Oregon’s physician-assisted suicide law. Prior to her suicide, she became an advocate for “terminally ill patients who want to end their own lives”. We, however, are advocating that patients with glioblastoma and other types of terminal cancer for which there are promising immunotherapies seek out clinical trials that are actively recruiting patients. There is the possibility that some of these patients will receive treatments that will result in regression of their tumors or long-term remissions. (See, for example, the case highlighted in our September 16, 2014 blog article. There are many other such cases.) And it is highly likely that patients who participate in these trials will help researchers to learn how to better treat cancers that are now considered “incurable” or “terminal”, and thus help patients who contract these diseases in the future. From our point of view, that is a lot better than taking one’s own life via assisted suicide, and/or becoming an euthanasia advocate.

Masayo Takahashi, M.D., Ph.D.

Another researcher profiled in “Nature’s 10” is Masayo Takahashi, an ophthalmologist at the RIKEN Center for Developmental Biology (CDB) in Kobe, Japan who has been carrying out pioneering human stem cell clinical studies. We also discussed Dr. Takahashi’s research in our March 14, 2013 article on this blog.

At the time of our article, Dr. Takahashi and her colleagues planned to submit an application to the Japanese health ministry for a clinical study of induced pluripotent stem cell (iPS)-derived cells, which would constitute the first human study of such cells. They planned to treat approximately six people with severe age-related macular degeneration (AMD). The researchers planned to take an upper arm skin sample the size of a peppercorn, and transform the cells from this sample into iPS cells by using specific proteins. They were then to add other factors to induce differentiation of the iPS cells into retinal cells. Then a small sheet of these retinal cells were to be placed under the damaged area of the retina, where they were expected to grow and repair the damaged retinal pigment epithelium (RPE). Although the researchers would like to demonstrate efficacy of this treatment, the main focus of the initial studies was to be on safety.

According to the “Nature’s 10” article, such an autologous iPS-derived implant was transplanted into the back of a the damaged retina of one patient in September 2014. This patient, a woman in her 70s, had already lost most of her vision, and the treatment is unlikely to restore it. However, Dr. Takahashi and her colleagues are determining whether the transplant is safe and prevents further retinal deterioration. So far, everything has gone smoothly, and the transplant appears to have retained its integrity. However, the researchers will not reveal whether the study has been a success until a year after the transplantation.

The “Nature’s 10” article discusses how this technology might be moved forward into clinical use if the initial study is successful. It also discusses how Dr. Takahashi has been carrying her research forward in the face of a major setback that has plagued stem cell research at the CDB in 2014, as the result of the withdrawal of two once highly-regarded papers and the suicide of one of their authors.

Generation of insulin-producing human pancreatic β cells from embryonic stem (ES) cells or iPS

Another stem cell-related item, which was covered in Science’s end-of-2014 “Runners Up” article, concerned the in vitro generation of human pancreatic β cells from embryonic stem (ES) cells or iPS. For over a decade, researchers have been attempting to accomplish this feat, in order to have access to autologous β cells to treat type 1 diabetes, in which an autoimmune attack destroys a patient’s own β cells. In vitro generated β cells might also be used to screen for drugs that can improve β cell function, survival, and/or proliferation in patients with type 2 diabetes.

As reported in the Science article, two research groups—one led by Douglas A. Melton, Ph.D. (Harvard Stem Cell Institute, Cambridge, MA), and the other by Alireza Rezania, Ph.D. at BetaLogics Venture, a division of Janssen Research & Development, LLC.–developed protocols to produce unlimited quantities of β cells, in the first case from IPS cells, and in the other from ES cells.

However, in order to use the β cells to treat type 1 diabetes patients, researchers need to develop means (for example, some type of encapsulation) to protect the cells from the autoimmune reaction that killed patients’ own natural β cells in the first place. For example, Dr. Melton is collaborating with the laboratory of Daniel Anderson, Ph.D. (MIT Koch Institute for Integrative Cancer Research). Dr. Anderson and his colleagues have developed a chemically modified alginate that can be used to coat and protects clusters of β cells, thus forming artificial islets. Dr. Melton estimates that such implants would be about the size of a credit card.

The 2014 Boston biotech IPO boom

Meanwhile, the Boston area biotechnology community has seen a boom in young companies holding their initial public offerings (IPOs). 17 such companies were listed in a December 24 article in the Boston Business Journal. Among these companies are three that have been covered in the Biopharmconsortium Blog—Zafgen, Dicerna, and Sage Therapeutics.

We hope that 2015 will see at least the level of key discoveries, drug approvals, and financings seen in 2014.

As the producers of this blog, and as consultants to the biotechnology and pharmaceutical industry, Haberman Associates would like to hear from you. If you are in a biotech or pharmaceutical company, and would like a 15-20-minute, no-obligation telephone discussion of issues raised by this or other blog articles, or of other issues that are important to your company, please contact us by phone or e-mail. We also welcome your comments on this or any other article on this blog.